Gene duplications and the origins of vertebrate development.
Holland PW., Garcia-Fernàndez J., Williams NA., Sidow A.
All vertebrates possess anatomical features not seen in their closest living relatives, the protochordates (tunicates and amphioxus). Some of these features depend on developmental processes or cellular behaviours that are again unique to vertebrates. We are interested in the genetic changes that may have permitted the origin of these innovations. Gene duplication, followed by functional divergence of new genes, may be one class of mutation that permits major evolutionary change. Here we examine the hypothesis that gene duplication events occurred close to the origin and early radiation of the vertebrates. Genome size comparisons are compatible with the occurrence of duplications close to vertebrate origins; more precise insight comes from cloning and phylogenetic analysis of gene families from amphioxus, tunicates and vertebrates. Comparisons of Hox gene clusters, other homeobox gene families, Wnt genes and insulin-related genes all indicate that there was a major phase of gene duplication close to vertebrate origins, after divergence from the amphioxus lineage; we suggest there was probably a second phase of duplication close to jawed vertebrate origins. From amphioxus and vertebrate homeobox gene expression patterns, we suggest that there are multiple routes by which new genes arising from gene duplication acquire new functions and permit the evolution of developmental innovations.