Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Wild-living animals are subject to weather variability that may cause the generation of reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving demographic responses. Our 3-yr field study investigated the effects of seasonal weather conditions on biomarkers for oxidative stress, oxidative damage, and antioxidant defense in the European badger (Meles meles). We found age class effects: cubs were more susceptible to oxidative stress and oxidative damage than adults, especially very young cubs in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although previous studies have found that intermediate spring and summer rainfall and warmer temperatures favor cub survival, counterintuitively these conditions were associated with more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant biomarkers were high. In contrast, adult responses accorded with previous survival analyses. Wetter spring and summer conditions were associated with higher oxidative damage, but they were also associated with higher antioxidant biomarkers. Autumnal weather did not vary substantially from normative values, and thus effects were muted. Winter carryover effects were partially evident, with drier and milder conditions associated with greater oxidative damage in the following spring but also with higher antioxidant capacity. Plausibly, warmer conditions promoted more badger activity, with associated metabolic costs at a time of year when food supply is limited. Modeling biomarkers against projected climate change scenarios predicted greater future risks of oxidative damage, although not necessarily exceeding antioxidant capacity. This interdisciplinary approach demonstrates that individual adaptive physiological responses are associated with variation in natural environmental conditions.

Original publication

DOI

10.1086/698609

Type

Journal article

Journal

Physiol Biochem Zool

Volume

91

Pages

987 - 1004

Keywords

antioxidant, climate change, ecophysiology, oxidative damage, oxidative stress, reactive oxygen species, weather conditions, Aging, Animals, Antioxidants, Biomarkers, Climate Change, Lipid Peroxidation, Longevity, Mustelidae, Oxidative Stress, Principal Component Analysis, Seasons, Time Factors, Weather