Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Contents 32 I. 32 II. 33 III. 36 IV. 41 43 References 43 SUMMARY: Photosynthesis is one of the most important biological processes on Earth. It provides the consumable energy upon which almost all organisms are dependent, and modulates the composition of the planet's atmosphere. To carry out photosynthesis, plants require a large cohort of genes. These genes encode proteins that capture light energy, store energy in sugars and build the subcellular structures required to facilitate this energy capture. Although the function of many of these genes is known, little is understood about the transcriptional networks that coordinate their expression. This review places our understanding of the transcriptional regulation of photosynthesis in Arabidopsis thaliana in an evolutionary context, to provide new insight into transcriptional regulatory networks that control photosynthesis gene expression in grasses. The similarities and differences between the rice and Arabidopsis networks are highlighted, revealing substantial disparity between the two systems. In addition, avenues are identified that may be exploited for photosynthesis engineering projects in the future.

Original publication

DOI

10.1111/nph.14682

Type

Journal article

Journal

New Phytol

Publication Date

10/2017

Volume

216

Pages

32 - 45

Keywords

Arabidopsis thaliana, Oryza sativa (rice), gene regulatory network, photosynthesis, transcription factor