Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The tendency for sexual size dimorphism (SSD) to increase with body mass in taxa where males are larger, and to decrease when females are larger, is known as Rensch's rule. In mammals, where the trend occurs, it is believed to be the result of a competitive advantage for larger males, while female mass is constrained by the energetics of reproduction. Here, we examine the allometry of SSD within the Felidae and Canidae, demonstrating distinctly different patterns: in felids, there is positive allometric scaling, while there is no trend in canids. We hypothesize that feeding ecology, via its effect on female spacing patterns, is responsible for the difference; larger male mass may be advantageous only where females are dispersed such that males can defend access to them. This is supported by the observation that felids are predominately solitary, and all are obligate carnivores. Similarly, carnivorous canids are more sexually dimorphic than insectivores and omnivores, but carnivory does not contribute to a Rensch effect as dietary variation occurs across the mass spectrum. The observed inter-familial differences are also consistent with reduced constraints on female mass in the canids, where litter size increases with body mass, versus no observable allometry in the felids.

Original publication

DOI

10.1098/rsos.170453

Type

Journal article

Journal

R Soc Open Sci

Publication Date

06/2017

Volume

4

Keywords

Canidae, Felidae, allometry, diet, dimorphism, resource dispersion