Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Circadian deficits in Huntington's disease (HD) are recapitulated in both fragment (R6/2) and full-length (Q175) mouse models of HD. Circadian rhythms are regulated by the suprachiasmatic nuclei (SCN) in the hypothalamus, which are primarily entrained by light detected by the retina. The SCN receives input from intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin, but also receive input from rods and cones. In turn, ipRGCs mediate a range of non-image forming responses to light including circadian entrainment and the pupillary light response (PLR). Retinal degeneration/dysfunction has been described previously in R6/2 mice. We investigated, therefore, whether or not circadian disruption in HD mice is due to abnormalities in retinal photoreception. We measured the expression of melanopsin, rhodopsin and cone opsin, as well as other retinal markers (tyrosine hydroxylase, calbindin, PKCα and Brna3), in R6/2 and Q175 mice at different stages of disease. We also measured the PLR as a 'readout' for ipRGC function and a marker of light reception by the retina. We found that the PLR was attenuated in both lines of HD mice. This was accompanied by a progressive downregulation of cone opsin and melanopsin expression. We suggest that disease-related changes in photoreception by the retina contribute to the progressive dysregulation of circadian rhythmicity and entrainment seen in HD mice. Colour vision is abnormal in HD patients. Therefore, if retinal deficits similar to those seen in HD mice are confirmed in patients, specifically designed light therapy may be an effective strategy to improve circadian dysfunction.

Original publication

DOI

10.1093/hmg/ddw359

Type

Journal article

Journal

Hum Mol Genet

Publication Date

27/12/2016

Volume

25