Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

As populations across the world both age and become more obese, the numbers of individuals with Alzheimer's disease and diabetes are increasing; posing enormous challenges for society and consequently becoming priorities for governments and global organizations. These issues, an ageing population at risk of neurodegenerative diseases such as Alzheimer's disease and an increasingly obese population at risk of metabolic alterations such as type 2 diabetes, are usually considered as independent conditions, but increasing evidence from both epidemiological and molecular studies link these disorders. The aim of this review was to highlight these multifactorial links. We will discuss the impact of direct links between insulin and IGF-1 signalling and the Alzheimer's disease-associated pathological events as well as the impact of other processes such as inflammation, oxidative stress and mitochondrial dysfunction either common to both conditions or perhaps responsible for a mechanistic link between metabolic and neurodegenerative disease. An understanding of such associations might be of importance not only in the understanding of disease mechanisms but also in the search for novel therapeutic options.

Original publication

DOI

10.1111/joim.12534

Type

Journal article

Journal

J Intern Med

Publication Date

11/2016

Volume

280

Pages

430 - 442

Keywords

Alzheimer's disease, beta-amyloid, diabetes, inflammation, insulin, tau, Aging, Alzheimer Disease, Animals, Brain, Diabetes Mellitus, Type 2, Humans, Inflammation, Insulin, Insulin-Like Growth Factor I, Mitochondria, Neurons, Oxidative Stress, Signal Transduction