Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We present data on the relationship between the rate of transposition and copy number in the genome for the copia and Doc retrotransposons of Drosophila melanogaster. copia and Doc transposition rates were directly measured in sublines of the isogenic 2b line using individual males or females, respectively, with a range of copia copy numbers from 49 to 103 and Doc copy numbers from 112 to 235 per genome. Transposition rates varied from 3 x 10(-4) to 2 x 10(-2) for copia and from 2 x 10(-4) to 2 x 10(-3) for Doc. A positive relationship between transposition rate and copy number was found both for copia and for Doc when the data were analysed across all the 2b individuals; no significant correlation was found when the data were analysed across the subline means for both retrotransposons tested. Overall, correlation between copia and Doc transposition rate and their copy number in the genome, if any, was not negative, which would be expected if transposable elements (TEs) self-regulate their copy number. Thus, for copia and Doc no evidence for self-regulation was provided, and at least for these two TEs this hypothesis is not favoured for explaining the maintenance of the stable copy number that is characteristic for natural populations. The transposition rate of copia was measured twice, and a strong positive correlation between copy number and transposition rate both across individuals and subline means was found in 1994, while in 1995 no correlation was found. This fact is in agreement with the hypothesis that a positive correlation between the rate of transposition and TE copy number may be a default starting point for future host-TE coevolution.

Type

Journal article

Journal

Genet Res

Publication Date

08/1998

Volume

72

Pages

1 - 11

Keywords

Animals, Drosophila melanogaster, Female, Gene Dosage, Male, Retroelements