Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Global change alters the environment, including increases in the frequency of (un)favorable events and shifts in environmental noise color. However, how these changes impact the dynamics of populations, and whether these can be predicted accurately has been largely unexamined. Here we combine recently developed population modeling approaches and theory in stochastic demography to explore how life history, morphology, and average fitness respond to changes in the frequency of favorable environmental conditions and in the color of environmental noise in a model organism (an acarid mite). We predict that different life-history variables respond correlatively to changes in the environment, and we identify different life-history variables, including lifetime reproductive success, as indicators of average fitness and life-history speed across stochastic environments. Depending on the shape of adult survival rate, generation time can be used as an indicator of the response of populations to stochastic change, as in the deterministic case. This work is a useful step toward understanding population dynamics in stochastic environments, including how stochastic change may shape the evolution of life histories. © 2014 by The University of Chicago.

Original publication

DOI

10.1086/675817

Type

Journal article

Journal

American Naturalist

Publication Date

01/01/2014

Volume

183

Pages

784 - 797