Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An fMRI pair-adaptation paradigm was used to identify the brain regions linked to the apprehension of small and large numbers of items. Participants classified stimuli on the basis of their numerosities (fewer or more than five dots). We manipulated the type of repetition within pairs of dot arrays. Overall processing of pairs with small as opposed to large quantities was associated with a decreased BOLD response in the midline structures and inferior parietal cortex. The opposite pattern was observed in middle cingulate cortex. Pairs in which the same numerosity category was repeated, were associated with a decreased signal in the left prefrontal and the left inferior parietal cortices, compared with when numerosities changed. Repetitions of exact numerosities irrespective of sample size were associated with decreased responses in bi-lateral prefrontal, sensory-motor regions, posterior occipital and left intraparietal sulcus (IPS). More importantly, we found value-specific adaptation specific to repeated small quantity in the left lateral occipito-temporal cortex, irrespective of whether the exact same stimulus pattern repeated. Our results indicate that a large network of regions (including the IPS) support visual quantity processing independent of the number of items present; however assimilation of small quantities is associated with additional support from regions within the left occipito-temporal cortex. We propose that processing of small quantities is aided by a subitizing-specific network. This network may account for the increased processing efficiency often reported for numerosities in the subitizing range.

Original publication

DOI

10.1002/hbm.22453

Type

Journal article

Journal

Hum Brain Mapp

Publication Date

08/2014

Volume

35

Pages

3988 - 4001

Keywords

adaptation, functional magnetic resonance imaging, mental processes, neuroimaging, numerical cognition, perception, Adult, Brain, Brain Mapping, Female, Humans, Magnetic Resonance Imaging, Male, Mathematical Concepts, Neural Pathways, Neuropsychological Tests, Photic Stimulation, Thinking, Visual Perception, Young Adult