Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Acetylcholine, the agonist for the nicotinic acetylcholine receptor, has been observed directly when bound specifically to its binding site in the fully functional receptor-enriched membranes from Torpedo nobiliana. High-resolution solid-state, magic angle spinning 13C NMR methods have been used to observe selectively N+(13CH3)3 acetylcholine bound in as few as 20 nmol of receptor binding sites, against a background of natural abundance membrane resonances and excess acetylcholine in free solution. The specificity of the binding has been demonstrated to be pharmacologically significant through the use of the competitive inhibitor alpha bungarotoxin which selectively displaces and prevents binding of acetylcholine to the membrane-bound receptor. The chemical shift assigned to N+(13CH3)3 acetylcholine in solution and crystalline solid is 53.9 +/- 0.04 ppm, and it changes by 1.6 ppm (p < 0.05) for agonist when bound specifically in the receptor binding site. Through the use of computer simulations of chemical shifts carried out on acetylcholine bound to the acetylcholinesterase, we propose that the cause for this change is the presence of aromatic side chains lining the receptor binding site. It is suggested that the binding of acetylcholine to the nicotinic acetylcholine receptor is mediated primarily through the interaction of the quaternary ammonium group of the acetylcholine with the pi bonded systems in the aromatic side chains. Longitudinal relaxation time measurements show that the residency time for the acetylcholine observed in DDCP experiments is long (> 200 ms) with respect to the longitudinal relaxation time of other assignable resonances within the spectrum from the lipid and protein and confirms that the acetylcholine is protein-associated, and not free in solution or nonspecifically bound.

Original publication

DOI

10.1021/bi980390q

Type

Journal article

Journal

Biochemistry

Publication Date

28/07/1998

Volume

37

Pages

10854 - 10859

Keywords

Acetylcholine, Animals, Binding Sites, Bungarotoxins, Carbon Isotopes, Computer Simulation, Crystallography, X-Ray, Magnetic Resonance Spectroscopy, Perchlorates, Receptors, Nicotinic, Time Factors, Torpedo