Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Nitrilase enzymes catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have been identified in plants, bacteria and fungi. There is mounting evidence to support a role for nitrilases in plant-microbe interactions, but the activity of these enzymes in plant pathogenic bacteria remains unexplored. The genomes of the plant pathogenic bacteria Pseudomonas syringae pv. syringae B728a and Pseudomonas syringae pv. tomato DC3000 contain nitrilase genes with high similarity to characterized bacterial arylacetonitrilases. In this study, we show that the nitrilase of P. syringae pv. syringae B728a is an arylacetonitrilase, which is capable of hydrolysing indole-3-acetonitrile to the plant hormone indole-3-acetic acid, and allows P. syringae pv. syringae B728a to use indole-3-acetonitrile as a nitrogen source. This enzyme may represent an additional mechanism for indole-3-acetic acid biosynthesis by P. syringae pv. syringae B728a, or may be used to degrade and assimilate aldoximes and nitriles produced during plant secondary metabolism. Nitrilase activity was not detected in P. syringae pv. tomato DC3000, despite the presence of a homologous nitrilase gene. This raises the interesting question of why nitrilase activity has been retained in P. syringae pv. syringae B728a and not in P. syringae pv. tomato DC3000.

Original publication

DOI

10.1111/j.1364-3703.2009.00595.x

Type

Journal article

Journal

Mol Plant Pathol

Publication Date

11/2009

Volume

10

Pages

857 - 865

Keywords

Aminohydrolases, Indoleacetic Acids, Indoles, Phylogeny, Pseudomonas syringae