Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. The effects of cholinergic agonists upon intracellular free Ca2+ levels ([Ca2+]i) have been studied in enzymically isolated rat carotid body single type I cells, using indo-1. 2. Acetylcholine (ACh) dose-dependently increased [Ca2+]i in 55% of cells studied (EC50 = 13 microM). These [Ca2+]i rises were partially inhibited by atropine or mecamylamine. 3. Specific nicotinic and muscarinic agonists also elevated [Ca2+]i in a dose-dependent manner (nicotine, EC50 = 15 microM; methacholine, EC50 = 20 microM). 4. While the majority of the ACh-sensitive cells responded to both classes of cholinergic agonist, 29% responded exclusively to nicotinic stimulation and 9% responded exclusively to muscarinic stimulation. 5. In the presence of nicotinic agonists, Ca2+i responses were transient. In the presence of muscarinic agonists, Ca2+i responses consisted of an initial rise, which then declined to a lower plateau level. 6. Nicotinic responses were rapidly abolished in Ca(2+)-free medium, suggesting that they are dependent on Ca2+ influx. 7. The plateau component of the muscarinic-activated response was also abolished in Ca(2+)-free conditions. The rapid initial [Ca2+]i rise, however, could still be evoked after several minutes in Ca(2+)-free medium. Muscarine also increased Mn2+ quenching of intracellular fura-2 fluorescence. These data suggest that the full muscarinic response depends on both Ca2+ release from intracellular stores and Ca2+o influx. 8. The results indicate that, in rat carotid body type I cells, both nicotinic and muscarinic acetylcholine receptors increase [Ca2+]i, but achieve this via different mechanisms. ACh may therefore play a role in carotid body function by modulating Ca2+i in the chemosensory type I cells.

Type

Journal article

Journal

J Physiol

Publication Date

15/01/1997

Volume

498 ( Pt 2)

Pages

327 - 338

Keywords

Acetylcholine, Animals, Calcium, Carotid Body, Culture Media, Methacholine Compounds, Muscarine, Muscarinic Agonists, Nicotine, Nicotinic Agonists, Rats, Rats, Sprague-Dawley, Receptors, Muscarinic, Receptors, Nicotinic, Receptors, Presynaptic, Transduction, Genetic