Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Solid spider dragline silk is well-known for its mechanical properties. Nonetheless a detailed picture of the spinning process is lacking. Here we report NMR studies on the liquid silk within the wide sac of the major ampullate (m.a.) gland from the spider Nephila edulis. The resolution in the NMR spectra is shown to be significantly improved by the application of magic-angle spinning (MAS). From the narrow width of the resonance lines and the chemical shifts observed, it is concluded that the silk protein within the wide sac of the m.a. gland is dynamically disordered throughout the molecule in the sense that each amino acid of a given type senses an identical environment, on average. The NMR data obtained are consistent with an isotropic liquid phase.

Original publication

DOI

10.1021/bm0343904

Type

Journal article

Journal

Biomacromolecules

Publication Date

2004

Volume

5

Pages

834 - 839

Keywords

Animals, Female, Nuclear Magnetic Resonance, Biomolecular, Silk, Spiders