Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Behavioral experiments in humans with a rare genetic mutation that compromises the function of alpha-transducin (Galpha the alpha-subunit of the G-protein in the primary cone phototransduction cascade) reveal a residual cone response only viable at high light levels and at low temporal frequencies. It has three characteristic properties. First, it limits temporal frequency sensitivity to the equivalent of a simple first order reaction with a time constant of approximately 140 ms. Second, it delays the visual response by an amount that is also consistent with such a reaction. Third, it causes temporal acuity to be linearly related to the logarithm of the amount of bleached pigment. We suggest that these properties are consistent with the residual function depending on a sluggishly generated cone photobleaching product, which we tentatively identify as a cone metarhodopsin. By activating the transduction cascade, this bleaching product mimics the effects of real light and is therefore one of the molecular origins of "background equivalence," the long-established observation that the aftereffects of photopigment bleaches and the effects of real background lights are equivalent. Alternative explanations for the residual cone response include the possibilities that there is a secondary phototransduction mechanism that bypasses alpha-transduction, or that the truncated alpha-transduction that results from the mutation retains some minimal functionality.

Original publication

DOI

10.1167/7.4.8

Type

Journal article

Journal

J Vis

Publication Date

23/03/2007

Volume

7

Keywords

Dark Adaptation, Flicker Fusion, Humans, Light, Male, Models, Biological, Mutation, Photobleaching, Reaction Time, Retinal Cone Photoreceptor Cells, Retinal Pigments, Transducin, Vision, Ocular, Visual Acuity