Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcph1, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 female flies undergo mitotic arrest with barrel-shaped spindles lacking centrosomes. Mutation of Chk2 suppresses these defects, indicating that they occur secondary to a previously described Chk2-mediated response to mitotic entry with unreplicated or damaged DNA. mcph1 embryos exhibit genomic instability as evidenced by frequent chromatin bridging in anaphase. In contrast to studies of human MCPH1, the ATR/Chk1-mediated DNA checkpoint is intact in Drosophila mcph1 mutants. Components of this checkpoint, however, appear to cooperate with MCPH1 to regulate embryonic cell cycles in a manner independent of Cdk1 phosphorylation. We propose a model in which MCPH1 coordinates the S-M transition in fly embryos: in the absence of mcph1, premature chromosome condensation results in mitotic entry with unreplicated DNA, genomic instability, and Chk2-mediated mitotic arrest. Finally, brains of mcph1 adult male flies have defects in mushroom body structure, suggesting an evolutionarily conserved role for MCPH1 in brain development.

Original publication

DOI

10.1242/jcs.016626

Type

Journal article

Journal

J Cell Sci

Publication Date

15/10/2007

Volume

120

Pages

3565 - 3577

Keywords

Animals, Cell Cycle, Cell Cycle Proteins, Checkpoint Kinase 1, Checkpoint Kinase 2, Chromatin, Drosophila Proteins, Drosophila melanogaster, Embryo, Nonmammalian, Genes, Insect, Genomic Instability, Mitosis, Mushroom Bodies, Mutation, Protein Kinases, Protein-Serine-Threonine Kinases