Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sulfonylureas stimulate insulin secretion from pancreatic beta-cells by closing ATP-sensitive K+ (K(ATP)). The beta-cell and cardiac muscle K(ATP) channels have recently been cloned and shown to possess a common pore-forming subunit (Kir6.2) but different sulfonylurea receptor subunits (SUR1 and SUR2A, respectively). We examined the mechanism underlying the tissue specificity of the sulfonylureas tolbutamide and glibenclamide, and the benzamido-derivative meglitinide, using cloned beta-cell (Kir6.2/SUR1) and cardiac (Kir6.2/SUR2A) K(ATP) channels expressed in Xenopus oocytes. Tolbutamide inhibited Kir6.2/SUR1 (Ki approximately 5 micromol/l), but not Kir6.2/SUR2A, currents with high affinity. Meglitinide produced high-affinity inhibition of both Kir6.2/SUR1 and Kir6.2/SUR2A currents (Kis approximately 0.3 micromol/l and approximately 0.5 micromol/l, respectively). Glibenclamide also blocked Kir6.2/SUR1 and Kir6.2/SUR2A currents with high affinity (Kis approximately 4 nmol/l and approximately 27 nmol/l, respectively); however, only for cardiac-type K(ATP) channels was this block reversible. Physiological concentrations of MgADP (100 micromol/l) enhanced glibenclamide inhibition of Kir6.2/SUR1 currents but reduced that of Kir6.2/SUR2A currents. The results suggest that SUR1 may possess separate high-affinity binding sites for sulfonylurea and benzamido groups. SUR2A, however, either does not possess a binding site for the sulfonylurea group or is unable to translate the binding at this site into channel inhibition. Although MgADP reduces the inhibitory effect of glibenclamide on cardiac-type K(ATP) channels, drugs that bind to the common benzamido site have the potential to cause side effects on the heart.

Type

Journal article

Journal

Diabetes

Publication Date

09/1998

Volume

47

Pages

1412 - 1418

Keywords

ATP-Binding Cassette Transporters, Animals, Benzamides, Cloning, Molecular, Female, Glyburide, Heart, Hypoglycemic Agents, Islets of Langerhans, Membrane Potentials, Mice, Myocardium, Oocytes, Organ Specificity, Potassium Channels, Potassium Channels, Inwardly Rectifying, Rats, Receptors, Drug, Recombinant Proteins, Sulfonylurea Receptors, Tolbutamide, Xenopus laevis