Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Resting state networks (RSNs), as imaged by functional MRI, are distributed maps of areas believed to be involved in the function of the "resting" brain, which appear in both resting and task data. The current dominant view is that such networks are associated with slow (∼0.015Hz), spontaneous fluctuations in the BOLD signal. To date, limited work has investigated the frequency characteristics of RSNs; here we investigate a range of issues relating to their spectral and phase characteristics. Our results indicate that RSNs, although dominated by low frequencies in the raw BOLD signal, are in fact broadband processes that show temporal coherences across a wide frequency spectrum. In addition, we show that RSNs exhibit different levels of phase synchrony at different frequencies. These findings challenge the notion that FMRI resting signals are simple "low frequency" spontaneous signal fluctuations.

Original publication

DOI

10.1016/B978-0-444-53839-0.00017-X

Type

Journal article

Journal

Prog Brain Res

Publication Date

2011

Volume

193

Pages

259 - 276

Keywords

Adult, Algorithms, Brain, Brain Mapping, Humans, Magnetic Resonance Imaging, Models, Neurological, Nerve Net, Young Adult