Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.

Original publication

DOI

10.1111/plb.13601

Type

Journal article

Journal

Plant Biol (Stuttg)

Publication Date

03/01/2024

Keywords

Brassicaceae, C2 photosynthesis, C3-C4 intermediate photosynthesis, glycine decarboxylase, glycine shuttle, transposon