Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The relevance of correlations between blood oxygenation level dependent (BOLD) signal changes across the brain acquired at rest (resting state networks, or RSN) to functional networks was tested using two quantitative criteria: (1) the localisation of major RSN correlation clusters and the task-related maxima defined in BOLD fMRI signal changes from the same subjects; and (2) the relative hemispheric lateralisation (LI) of BOLD fMRI signal changes in sensorimotor cortex. RSN were defined on the basis of signal changes correlated with that of a "seed" voxel in the primary sensorimotor cortex. We found a generally close spatial correspondence between clusters of correlated BOLD signal change in RSN and activation maxima associated with hand movement. Conventional BOLD fMRI during active hand movement showed the expected wide variation in relative hemispheric lateralisation of LI for sensorimotor cortex across the subjects. There was a good correlation between LIs for the active hand movement task and the RSN (r=0.74, p<0.001). The RSN thus define anatomically relevant regions of motor cortex and change with functionally relevant variations in hemispheric lateralisation of sensorimotor cortical interactions with hand movement.

Original publication

DOI

10.1007/s00221-005-0059-1

Type

Journal article

Journal

Exp Brain Res

Publication Date

12/2005

Volume

167

Pages

587 - 594

Keywords

Adult, Data Interpretation, Statistical, Female, Functional Laterality, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Multiple Sclerosis, Relapsing-Remitting, Neocortex, Nerve Net, Oxygen, Signal Transduction, Somatosensory Cortex