Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Objective: Voxel-based morphometry was used to compare the amounts of gray matter in the brains of patients with Parkinson disease (PD) and normal control subjects (NCs) and to identify the specific regions responsible for cognitive dysfunction in PD. Methods: Patients were classified into nondemented (ND) and demented (D) groups according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders (4th ed.), and a group comparison was performed. In the ND patients, a correlation was also performed between local gray matter density and the score on Raven Colored Progressive Matrices (RCPM), a test of executive and visuospatial function. Results: In patients with advanced ND-PD vs NCs, atrophic changes were observed in the limbic/paralimbic areas and the prefrontal cortex. In D vs ND patients, atrophic change was observed widely in the limbic/paralimbic system, including the anterior cingulate gyrus and hippocampus as well as the temporal lobe, dorsolateral prefrontal cortex, thalamus, and caudate nucleus. The RCPM score was positively correlated with the gray matter density in the dorsolateral prefrontal cortex and the parahippocampal gyrus. Conclusions: In patients with Parkinson disease (PD), atrophic changes occur mainly in the limbic/paralimbic and prefrontal areas. These atrophic changes may be related to the development of dementia in PD.

Original publication

DOI

10.1212/01.WNL.0000149510.41793.50

Type

Journal article

Journal

Neurology

Publication Date

25/01/2005

Volume

64

Pages

224 - 229