Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), and temporal cortex (TE) all contribute to visual decision-making. Accumulating evidence suggests that vlPFC may play a central role in multiple cognitive operations, perhaps resembling domain-general regions of the human frontal lobe. We trained monkeys in a task calling for learning, retrieval, and spatial selection of rewarded target objects. Recordings of neural activity covered large areas of vlPFC, dlPFC, and TE. Results suggested a central role for vlPFC in each cognitive operation with strong coding of each task feature, while only location was strongly coded in dlPFC and current object identity in TE. During target selection, target location was communicated first from vlPFC to dlPFC, followed by extensive mutual support. In vlPFC, stimulus identities were independently coded in different task operations. The results suggest a central role for the inferior frontal convexity in controlling successive operations of a complex, multi-step task.

Original publication

DOI

10.1016/j.neuron.2022.11.004

Type

Journal article

Journal

Neuron

Publication Date

23/11/2022

Keywords

electrophysiology, frontal cortex, information flow, learning, mixed selectivity, retrieval, temporal cortex, visual search