
Automatic Navigation Mesh Generation in Configuration Space

Stuart Golodetz

1 Introduction

The representation of the walkable area of a 3D en-
vironment in such a way as to facilitate successful
navigation by intelligent agents is an important prob-
lem in the computer games and artificial intelligence
fields, and it has been extensively studied. As sur-
veyed by Tozour [15], there are a variety of common
ways to represent such an environment, including:

• Regular Grids. These support random-access
lookup but do not translate easily into a 3D con-
text. They also use a lot of memory and can
yield aesthetically unpleasing paths for navigat-
ing agents.

• Waypoint Graphs. These connect large numbers
of nodes (often manually placed) using edges
that imply walkability in the game world. They
were previously popular in games but are costly
to build and tend to constrain agents to walking
‘on rails’ between connected waypoints.

• Navigation Meshes. These represent the walka-
ble surface of a world explicitly using a polygonal
mesh. Polygons within a navigation mesh are
connected using links that imply the ability of
the agent to walk/step/jump/etc. between them
(see Figure 1).

Since their introduction by Greg Snook [13], naviga-
tion meshes have proved to be a particularly success-
ful approach due to their ability to represent the free
space available around paths through the world (this
is extremely useful because it provides the pathfinder
with the information it needs to successfully avoid lo-
cal obstacles). As a result, they have seen widespread
use in both games themselves, and popular games en-
gines such as Source and Unreal, and many games

Figure 1: An example navigation mesh and its links:
cyan = walk link; magenta = step up link; yellow =
step down link.

authors have contributed to their theoretical devel-
opment (most notably in the Game Programming
Gems and AI Game Programming Wisdom book se-
ries). There has also been significant interest from
researchers in academia (e.g. see [4, 7, 10, 16]).

One facet of using navigation meshes is how to
build them in the first place, and numerous meth-
ods have been described in the literature. An early
approach due to Tozour [14] works by first determin-
ing the walkable polygons in a 3D environment by
comparing their normals with the up vector, and then
iteratively merging together as many polygons as pos-
sible using the Hertel-Mehlhorn algorithm [6, 9] and a
3→ 2 merging technique. Hamm [5] generates a nav-
igation mesh using an empirical method that involves
sampling the environment to create a grid of points,
identifying a subset of points both on the boundary
of and within the environment, and connecting these
points to form a mesh. Ratcliff [11] creates a naviga-
tion mesh by tessellating all walkable surfaces in the
world, merging the results together to form suitable

1

(a) Finding the intersection of a
half-ray through the nearest vertex
of the AABB with the plane

(b) Expanding the plane
to form a configuration
space

(c) Finding the intersection of a
half-ray through the centre of the
AABB with the expanded plane

Figure 2: Detecting the first collision point between a translating AABB and a plane.

nodes and then computing links between neighbour-
ing nodes. Van Toll et al. [16] build a navigation
mesh for a multi-layer environment by constructing
a mesh based on the medial axis for each layer and
then connecting the medial axes by ‘opening’ the con-
nections between the layers. The same authors also
demonstrate how such a mesh can be dynamically
modified [17]. Mononen’s open-source Recast library
[8] first voxelizes the 3D environment before running
a watershed transform [1, 3] on the walkable voxels
and creating a mesh from the resulting partition of
the walkable surface.

In this article, I describe the implementation of
navigation mesh construction in my homemade hes-
perus engine [2], based heavily on the techniques of
van Waveren in [18]. The goal is to provide a helpful,
implementation-focused introduction for those with
no prior experience in the area. At a high-level, the
method is as follows:

1. Firstly, given a 3D environment made up of
brushes (simple convex polyhedra, each consist-
ing of a set of polygonal faces), and a set of axis-
aligned bounding boxes (AABBs) used to rep-
resent the possible sizes of the agents that will
navigate the environment, expand the brushes
by appropriate amounts (see §2) to create a set
of expanded brushes for each AABB.

2. Next, using constructive solid geometry (CSG)

techniques, union the expanded brushes for each
AABB together to form a polygonal environ-
ment. Filter the polygons of the environment
to find those that are walkable (judged by com-
paring their face normals with the up vector).
This gives us the polygons of a navigation mesh
for each AABB, but without any links to indi-
cate how agents should navigate between them.
See §3.

3. Finally, generate walk and step links between
the polygons of each navigation mesh (see §4)
– these indicate, respectively, that an agent can
walk from one polygon of the mesh to another,
or step up/down from one polygon to another.
These links can be used to generate a graph for
the purposes of path planning.

The following sections look at each of these steps in
more detail.

2 Configuration Space

When planning the movement of intelligent agents
(e.g. robots), a configuration space is the space of
possible configurations in which an agent can validly
exist. As a first example of what this concept means
and when it can be useful, consider detecting the
first point of collision between a plane and an AABB

2

(a) A brush-based environment (b) Configuration space (c) A bevel plane

Figure 3: A configuration space can be generated for the entirety of a brush-based environment by expanding
all of the brushes by an appropriate amount: (a) shows a brush-based environment, together with the range
of movement of a simple agent; (b) shows the configuration space that would be generated for the centre of
that agent; (c) shows that expanding non-axis-aligned brushes may require bevel planes (shown in green) in
order to correctly determine the range of movement.

that is moving by translation only – this might nor-
mally involve determining which vertex of the AABB
is nearest to the plane and finding the point at which
a half-ray oriented in the AABB’s direction of move-
ment and starting at that vertex would intersect the
plane (see Figure 2(a)). The configuration space al-
ternative is to initially expand the plane in the di-
rection of its normal by a fixed amount so that the
centre of the AABB touches the expanded plane pre-
cisely when the nearest vertex of the AABB touches
the non-expanded plane (see Figure 2(b)). The first
point of intersection can then be calculated by finding
the point at which a half-ray starting at the centre
of the AABB would touch the expanded plane (see
Figure 2(c)) – there is no longer a need to first de-
termine which vertex is nearest to the plane. Put
another way: by expanding the plane, we have cre-
ated the space of possible configurations for the cen-
tre of the AABB, and thereby restricted our testing
to making sure that the AABB’s centre is always in
a valid location.

As explained in [18], the concept of configuration
space can be extended to an entire 3D environment,
allowing us to test an agent represented as an AABB

against such an environment using only point-based
(rather than AABB-based) intersection tests: this
was the approach taken in the popular Quake III
Arena game. Starting with a brush-based 3D environ-
ment (i.e. one that is built up by combining instances
of simple convex polyhedra such as cuboids, cylin-
ders and cones – a common approach in 3D world
editors), a configuration space for agents with a spe-
cific AABB can be constructed by expanding each
brush by an appropriate amount (see Figures 3(a)
and 3(b)). Note that expanding each brush correctly
can require the introduction of additional bevel planes
as described in [18] (see Figure 3(c)).

3 Basic Mesh Generation

3.1 Brush Unioning

Having expanded the brushes of a brush-based en-
vironment to construct a configuration space for an
AABB in the manner described, the next step is to
union the expanded brushes together to generate a
set of polygons that represent the expanded environ-
ment as a whole. These polygons can then be pro-

3

Listing 1 Brush Unioning

function union_all
: (brushes: Vector <Brush >) → List <Polygon >

var result: List <Polygon >;

// Build a tree for each brush.
var trees: Vector <BSPTree > :=

map(build_tree , brushes);

// Determine which brushes can interact.
var brushesInteract: Vector <Vector <bool >>;
for each bi, bj ∈ brushes

if j == i then

brushesInteract(i, j) := false;
else

brushesInteract(i, j) := in_range(bi, bj);

// Clip each polygon to the tree of each brush
// within range of its own brush.
for each bi ∈ brushes

for each f ∈ faces(bi)
var fs: List <Polygon > := [f];
for each bj ∈ brushes

if brushesInteract(i, j) then

fs := clip_polygons(fs , trees(j), i < j);
result.splice(result.end(), fs);

return result;

cessed further to construct a navigation mesh.

In conceptual terms, the process of brush unioning
is relatively simple: given an input set of brushes,
each of which consists of a set of (outward-facing)
polygonal faces, it suffices to clip each brush face to
all the other brushes within range of its own brush in
the environment. From an implementation perspec-
tive, a convenient way to do this is to build a binary
space partitioning (BSP) tree for each brush and clip
each face to the trees of the other brushes. The high-
level implementation of this process can be found in
Listing 1 and full source code is available online [2].
The end result is a set of polygons that represent the
expanded environment.

3.2 Finding Walkable Polygons

Given the set of polygons generated in the previous
section, finding those polygons that are walkable is
straightforward: it suffices to compare the angle be-
tween each polygon’s normal, n̂, and the up vector
(û = (0, 0, 1)T) to some predefined threshold. The

Listing 2 Edge Plane Table Construction

function build_edge_plane_table
: (walkablePolygons: List <Polygon >) →

Map <Plane ,EdgeRefsPair ,PlaneOrdering >

var ept: Map <Plane ,EdgeRefsPair ,PlaneOrdering >;

for each poly ∈ walkablePolygons
for each p1 ∈ vertices(poly)

var p2: Vec3 := next_vertex(poly ,p1);
var plane: Plane := make_vertical_plane(p1,p2);
var canon: Plane := plane.make_canonical ();
var sameFacing: bool :=

plane.normal ().dot(canon.normal ()) > 0;
if sameFacing then

ept(canon). sameFacing.add(EdgeRef(poly ,p1));
else

ept(canon). oppFacing.add(EdgeRef(poly ,p1));

return ept;

angle can be computed using the dot product:

θ = cos−1 (n̂ · û)

We then keep precisely those polygons whose angle is
less than or equal to the threshold. In the hesperus
engine, a suitable threshold for human characters was
found to be π/4 (i.e. 45 degrees to the horizontal).

4 Walk and Step Links

To generate simple links between walkable polygons
in a navigation mesh, the general strategy is as fol-
lows:

1. We first create an edge plane table that maps
each vertical plane through one or more walkable
polygon edges to two sets of edges that lie in
the plane (edges in one set are oriented in the
same direction as a ‘canonical’ plane; edges in
the other have the opposite orientation).

2. For each plane in the table and for each ordered
pair of opposing edges for that plane, we check
to see whether any links need to be created. This
is done by transforming the opposing edges into
a 2D coordinate system in the plane and calcu-
lating the intervals (if any) in which the various
types of link need to be created.

4

(a) The navigation mesh for Ramp (b) A top-down view, with some edges highlighted

Plane Same-Facing Edges Opposite-Facing Edges
1 {e1, e2} {e3}
2 {e4} {e5}

(c) The part of the edge plane table corresponding to the highlighted edges

Figure 4: An illustration of (part of) the edge plane table for the hesperus test level called Ramp: the
ordered pairs of opposing edges are (e1, e3), (e2, e3), (e3, e1), (e3, e2), (e4, e5) and (e5, e4). The first four
pairs will cause walk links to be created; the last two pairs will cause step links to be created.

4.1 Edge Plane Table Construction

The edge plane table is a map of type Plane →
({Edge}, {Edge}). To construct it, we proceed as
shown in Listing 2. For each edge of a walkable poly-
gon, we first build the vertical plane passing through
it and then add it to the table based on its facing
with regard to the ‘canonical’ vertical plane through
the edge. This has the effect of separating the edges
of walkable polygons into two sets on each vertical
plane. These can then be checked against each other
in a pairwise manner to create navigation links – see
Figure 4 for an example. A few details are needed to
make this work:

1. Vertical Plane Construction. Each edge is neces-
sarily non-vertical (because it belongs to a walk-
able polygon), so the normal vector of a vertical
plane through it can be calculated straightfor-
wardly using the cross-product. If the endpoints
of the edge are p1 and p2, and û is once again
the up vector, then the desired normal can be
calculated as:

n = (p2 − p1)× û

Normalising this to give n̂ = n/ |n|, the equation
of the desired plane is then:

n̂ · x = n̂ · p1

2. Canonical Plane Determination. Given a plane
with equation ax + by + cz − d = 0, we de-
fine the ‘canonical’ form of this plane to be the
one where the first of a, b or c to be non-zero
is positive. Thus, the canonical form of both
0x+ 1y− 1z− 23 = 0 and 0x− 1y+ 1z+ 23 = 0
would be 0x + 1y − 1z − 23 = 0. Note that a
plane is either already in canonical form, or can
be canonicalised straightforwardly by negating
all of its coefficients.

3. Plane Ordering. In order to use planes as the
key for the edge plane table, we need to define
a suitable way of ordering them. This can be
done using a variant of the approach described
in [12]. In practice, the ordering was found to
be easier to debug (although somewhat less effi-
cient) if implemented as shown in Listing 3.

5

(a) (b) (c)

Figure 5: Creating links between edges: in (a), the gradients differ and a step down link is created from e
to f in the region labelled sdI, and a step up link is created in the region labelled suI; in (b), the gradients
are the same and a step up link is created from e to f in the region labelled xOverlap; in (c), a step down
link is created from e to f in the region labelled xOverlap. The remaining case, of parallel edges leading to
a walk link, is not shown.

4.2 Link Creation

To generate walk and step links, we transform each
ordered pair1 of opposing edges that lie in the same
(canonical) plane into a 2D (orthonormal) coordinate
system in the plane, and then determine the intervals
(if any) in which links need to be created. A suitable
2D coordinate system for a plane n̂ ·x−d = 0 can be
generated as follows. To determine a suitable origin
o′ for our coordinate system, we find the point on the
plane that lies nearest to the world origin 0: this is
simply dn̂. Given that the plane is vertical, suitable
axis vectors for our coordinate system can be defined
as:

î′ =
n̂× û

|n̂× û|

ĵ′ = û

This gives us a coordinate system in which î′ is hor-
izontal (in terms of the surrounding world) and ĵ′ is
vertical. To transform an edge e on the plane into
this new coordinate system, we transform each of its
endpoints e1 and e2 as follows:

en 7→ ((en − o′) · î′, (en − o′) · ĵ′) = e′n

Having transformed a pair of opposing edges e and f
into the plane’s coordinate system, we next calculate

the horizontal interval in which each edge lies; e.g. for
e this would be:

[min{e′1x, e′2x},max{e′1x, e′2x}]

If the horizontal intervals for the opposing edges
do not overlap, then there can be no links between
them. Otherwise, we compute the gradients m and
cut points c of the lines y = mx+ c through the two
edges (still in the plane’s coordinate system) using
basic mathematics; e.g. for e these would be:

me =
e′2y − e′1y
e′2x − e′1x

ce = e′1y −me ∗ e′1x
Based on a comparison of the gradients, we then cre-
ate the link segments in the plane as shown in List-
ing 4 and Figure 5. The endpoints `1 and `2 of each
link segment can be straightforwardly transformed
back into world space to create the actual links as
follows:

`n 7→ o′ + `nx ∗ î′ + `ny ∗ ĵ′

1Note that because the pairs are ordered, we consider each
unordered pair of edges twice when creating links, once in each
direction.

6

Listing 3 Plane Ordering

function less: (lhs: Plane; rhs: Plane) → bool

var nL, nR: Vec3 := lhs.normal(), rhs.normal ();
var dL, dR: double := lhs.dist(), rhs.dist ();

// If these planes are nearly the same (in terms
// of normal direction and distance value), then
// neither plane is "less" than the other.
var dotProd: double := nL.dot(nR);

// cos−1(x) is only defined for x ≤ 1, so clamp
// dotProd to avoid floating -point problems.
if dotProd > 1.0 then dotProd := 1.0;

var angle: double := cos−1(dotProd);
var dist: double := dL - dR;
if |angle| < εangle and |dist| < εdist then

return false;

var aL, bL , cL: double := nL.x, nL.y, nL.z;
var aR, bR , cR: double := nR.x, nR.y, nR.z;

// Otherwise , compare the two planes
// " lexicographically ".
return (aL <aR) or

(aL=aR and bL<bR) or

(aL=aR and bL=bR and cL <cR) or

(aL=aR and bL=bR and cL=cR and dL<dR);

5 Potential Extensions

At present, only walk and step links are implemented
in hesperus, but there are various additional links
that it would be helpful to add.

5.1 Crouch Links

One obvious extension is to add crouch links – these
are links that tell agents when they need to crouch
in order to traverse low areas (e.g. a low archway or
a pipe). As the example in Figure 6 illustrates, these
are inter-mesh links; they should be created so as to
link the standing and crouching meshes for an agent
at the boundary of areas that can be traversed on the
crouching mesh but not on the standing one. Assum-
ing that the AABBs for the two meshes differ only in
their heights (as is the case in the example), one way
of automatically detecting crouch links would be to
match edges on the standing mesh that do not cause
any walk or step links to be created with edges in the
same plane on the crouching mesh that do.

Figure 6: Creating crouch links between navigation
meshes can allow tall characters to pass through low
areas. Here, crouch links should be created between
the standing (green) and crouching (red) meshes to
allow agents to traverse this low archway.

5.2 Ladder Links

The addition of ladder links (indicating that an agent
can travel from one floor to another using a ladder)
is not conceptually very difficult, but it requires tool
support. In hesperus, the map editor would need to
be augmented to handle ladders and other static enti-
ties; when placing a ladder, it would then be a simple
matter to create a link at either end of the ladder to
represent travel in each direction. It should be noted
that traversing ladder links is significantly more com-
plicated than traversing walk or step links, because it
takes time to climb or descend a ladder and someone
may be coming the other way, but traversal is beyond
the scope of this article.

5.3 Jump Links

A third type of extremely useful link would be jump
links – these are used to indicate places at which an
agent can jump to reach another part of the navi-
gation mesh. Calculating jump links can be some-
what costly because it involves simulating the agent
making jumps to determine whether or not they are
possible. In our case, the situation is made slightly
easier because we are working in configuration space
and can avoid worrying about clearance, but general-
purpose jump links are still non-trivial to generate

7

automatically. One easy type of jump link that could
be generated immediately would be vertical jumps –
these can be generated in the same way as step up
links, but using a larger height threshold.

6 Conclusions

In this article, I have illustrated how to generate nav-
igation meshes at an implementation level using an
approach based on the work of van Waveren in [18].
Whilst there are many alternative techniques for nav-
igation mesh construction, as surveyed in the intro-
duction, this configuration space approach is useful
because it allows us to avoid the difficulties regard-
ing clearance height that have to be dealt with by
other approaches; it also means that each agent occu-
pies a single point on the mesh, completely avoiding
the problems caused by an agent straddling multiple
mesh polygons.

Navigation mesh generation, however, is only part
of the picture – in a future article, I hope to write
more about using navigation meshes for localisation,
movement and path planning.

7 Acknowledgements

As always, I would like to thank the Overload team
for reviewing this article and suggesting ways in
which to improve it.

Listing 4 Link Segment Calculation

function calculate_link_segments

: (e′1: Vec2; e′2: Vec2; f ′1: Vec2; f ′2: Vec2;
xOverlap: Interval) → LinkSegments

xO ≡ xOverlap;
var result: LinkSegments;

var me: double := (e′2y − e
′
1y) / (e′2x − e

′
1x);

var mf : double := (f ′2y − f
′
1y) / (f ′2x − f

′
1x);

var ce: double := e′1y −me ∗ e′1x;
var cf : double := f ′1y −mf ∗ f ′1x;
var ∆m, ∆c: double := mf −me, cf − ce;

if |∆m| > ε then

// If the gradients of the source and destination
// edges are different , then we get a combination
// of step up/step down links. We want to find:
// (a) The point walkX where yf = ye
// (b) The point stepUpX where yf − ye = STEPTOL
// (c) The point stepDownX where ye − yf = STEPTOL
var walkX: double := −∆c/∆m;
var stepUpX: double := (STEPTOL−∆c)/∆m;
var stepDownX: double := (−STEPTOL−∆c)/∆m;

// Construct the step down and step up intervals
// and clip them to the known x overlap interval.
var sdI , suI: Interval

:= [min{walkX, stepDownX},max{walkX, stepDownX}],
[min{walkX, stepUpX},max{walkX, stepUpX}];

sdI := sdI ∩ xO;
suI := suI ∩ xO;

// Construct the link segments.
if not sdI.empty then

result.downToF :=
[(sdI.low,me ∗ sdI.low + ce) ,
(sdI.high,me ∗ sdI.high + ce)];

result.upToE :=
[(sdI.low,mf ∗ sdI.low + cf) ,
(sdI.high,mf ∗ sdI.high + cf)];

if not suI.empty then <analogously >
else if |∆c| < STEPTOL then

// If the gradients of the source and destination
// edges are the same (i.e. parallel edges), then
// we either get a step up/step down combination ,
// or a walk link in either direction.
var s1: Vec2 := (xO.low,me ∗ xO.low + ce);
var s2: Vec2 := (xO.high,me ∗ xO.high + ce);
var d1: Vec2 := (xO.low,mf ∗ xO.low + cf);
var d2: Vec2 := (xO.high,mf ∗ xO.high + cf);

if ∆c > ε then

// The destination is higher than the source.
result.upToF := [s1, s2];
result.downToE := [d1,d2];

else if ∆c < −ε then

// The destination is lower than the source.
result.downToF := [s1, s2];
result.upToE := [d1,d2];

else

// The destination and source are level.
result.walk := [s1, s2];

8

References

[1] Serge Beucher. Segmentation d’Images et
Morphologie Mathématique (Image Segmenta-
tion and Mathematical Morphology). PhD thesis,
E.N.S. des Mines de Paris, 1990.

[2] Stuart Golodetz. The hesperus 3D game engine.
Source code available online at:
https://github.com/sgolodetz/hesperus2.

[3] Rafael C Gonzalez and Richard E Woods. Dig-
ital Image Processing. Pearson Education, 2nd
edition, 2002.

[4] D Hunter Hale and G Michael Youngblood. Full
3D Spatial Decomposition for the Generation of
Navigation Meshes. In Proceedings of the Fifth
Artificial Intelligence for Interactive Digital En-
tertainment Conference, pages 142–147, 2009.

[5] David Hamm. Navigation Mesh Generation: An
Empirical Approach. In Steve Rabin, editor, AI
Game Programming Wisdom 4, pages 113–123.
Charles River Media, 2008.

[6] S Hertel and K Mehlhorn. Fast triangulation of
simple polygons. In Proceedings of the 4th Inter-
national Conference on the Foundations of Com-
putation Theory, volume 158 of Lecture Notes
in Computer Science, pages 207–218. Springer-
Verlag Berlin, 1983.

[7] Marcelo Kallmann. Navigation Queries from Tri-
angular Meshes. In Proceedings of the Third
International Conference on Motion in Games
(MIG), pages 230–241. Springer-Verlag Berlin,
2010.

[8] Mikko Mononen. Navigation Mesh Generation
via Voxelization and Watershed Partitioning.
AiGameDev.com, March 2009. Slides available
online (as of 30th July 2013) at https://

sites.google.com/site/recastnavigation/

MikkoMononen_RecastSlides.pdf.

[9] Joseph O’Rourke. Computational Geometry in
C, pages 60–61. Cambridge University Press,
2nd edition, 1994.

[10] Julien Pettré, Jean-Paul Laumond, and Daniel
Thalmann. A navigation graph for real-time
crowd animation on multilayered and uneven
terrain. In Proceedings of the 1st Interna-
tional Workshop on Crowd Simulation, Lau-
sanne, Switzerland, 2005.

[11] John W Ratcliff. Automatic Path Node Gener-
ation for Arbitrary 3D Environments. In Steve
Rabin, editor, AI Game Programming Wisdom
4, pages 159–172. Charles River Media, 2008.

[12] David Salesin and Filippo Tampieri. Grouping
Nearly Coplanar Polygons into Coplanar Sets.
In David Kirk, editor, Graphics Gems III, pages
225–230. Morgan Kaufmann, 1992.

[13] Greg Snook. Simplified 3D Movement and
Pathfinding Using Navigation Meshes. In Mark
DeLoura, editor, Game Programming Gems,
pages 288–304. Charles River Media, 2000.

[14] Paul Tozour. Building a Near-Optimal Naviga-
tion Mesh. In Steve Rabin, editor, AI Game
Programming Wisdom, pages 171–185. Charles
River Media, 2002.

[15] Paul Tozour. Search Space Representations.
In Steve Rabin, editor, AI Game Programming
Wisdom 2, pages 85–102. Charles River Media,
2004.

[16] Wouter G van Toll, Atlas F Cook IV, and Roland
Geraerts. Navigation Meshes for Realistic Multi-
Layered Environments. In Proceedings of the
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 3526–
3532, San Francisco, California, USA, 2011.

[17] Wouter G van Toll, Atlas F Cook IV, and Roland
Geraerts. A navigation mesh for dynamic en-
vironments. Computer Animation and Virtual
Worlds, 23:535–546, 2012.

[18] Jean Paul van Waveren. The Quake III Arena
Bot. Master’s thesis, Delft University of Tech-
nology, 2001.

9

