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ABSTRACT

The segmentation of medical scans (CT, MRI, etc.) and
the subsequent identification of key features therein, such
as organs and tumours, is an important precursor to many
medical imaging applications. It is a difficult problem, not
least because of the extent to which the shapes of organs
can vary from one image to the next. One interesting ap-
proach is to start by partitioning the image into a region
hierarchy, in which each node represents a contiguous re-
gion of the image. This is a well-known approach in the
literature: the resulting hierarchy is variously referred to as
a partition tree, an image tree, or a semantic segmentation
tree. Such trees summarise the image information in a help-
ful way, and allow efficient searches for regions which satisfy
certain criteria. However, once built, the hierarchy tends to
be static, making the results very dependent on the initial
tree construction process (which, in the case of medical im-
ages, is done independently of any anatomical knowledge we
might wish to bring to bear). In this paper, we describe our
approach to the automatic feature identification problem,
in particular explaining why modifying the hierarchy at a
later stage can be useful, and how it can be achieved. We
illustrate the efficacy of our method with some preliminary
results showing the automatic identification of ribs.

Categories and Subject Descriptors

1.4.6 Image Processing and Computer Vision]: Seg-
mentation; 1.4.10 [Image Processing and Computer Vi-
sion]: Image Representation

General Terms
Algorithms

Keywords

partition forest, hierarchy, region adjacency graph, Bayesian
classifier, medical imaging, abdominal CT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSTST 2008 October 27-31, 2008, Cergy-Pontoise, France

Copyright 2008 ACM 978-1-60558-046-3/08/0003 ...$5.00.

Irina Voiculescu
Oxford University Computing
Laboratory
Wolfson Building, Parks Road

.. Oxford OX1 3QD, UK
irina@comlab.ox.ac.uk

Stephen Cameron
Oxford University Computing
Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
cameron@comlab.ox.ac.uk

1. INTRODUCTION

The ability to segment medical scans automatically and
then identify important features (such as organs and tu-
mours) in them is an important precursor to numerous med-
ical imaging applications, including 3D visualization [13],
volume estimation [9], and automatic landmark-based regis-
tration. Segmentation, the process of partitioning an image
into semantically-meaningful regions, is difficult to automate
in the case of medical images because the shapes of inter-
esting features can vary significantly from one image to the
next. Moreover, the boundaries between features are often
unclear: for example, whilst a radiologist can easily tell the
difference between normal parenchyma and cancerous tis-
sue, automatically tracing the precise boundary is a much
more difficult task.

One approach to the problem initially segments the im-
age using the watershed transform, a common image pro-
cessing technique from the field of mathematical morphol-
ogy [3]. This works by treating the image as a landscape,
with the grey value of a pixel giving its height. The land-
scape is divided into valleys (one per local minimum in the
image), thereby partitioning the original image. The water-
shed tends to seriously over-segment images, however, so a
standard approach is to then use region merging to reduce
the region count to the desired level. The waterfall trans-
form [3, 10] is a multi-pass, hierarchical algorithm designed
for expressly this purpose. It naturally produces a partition
hierarchy of the image, in which each node represents a re-
gion of the image: see Figure 1. This is variously known as a
partition tree [12], picture tree [2], or semantic segmentation
tree [1] approach (although these differ somewhat in the de-
tails, they are all based on the same basic principle). Each
node of the tree can be annotated with useful properties for
its corresponding region, and these properties can then be
used when searching the tree to classify a region as being a
particular feature of interest.

This is an interesting overall approach which should work
well provided that the features we’re interested in really do
correspond to individual regions in the tree; unfortunately
this is not always the case. The problem is in how the tree is
constructed: it is common to merge together regions which
satisfy some similarity criterion (e.g. similar grey levels).
This is a reasonable first approximation, but provides no op-
portunity to bring crucial anatomical knowledge to bear on
the problem. In this paper, we propose to solve this problem
by allowing anatomically-based modifications to the hierar-
chy at a later stage of the algorithm.
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Figure 1: The partition tree for a simple image: the union of the regions at each level of the tree gives the

whole image (see the squares on the right of the tree)

The layout of the paper is as follows: in §2, we define parti-
tion hierarchies and briefly explain how they are built. In §3,
we describe an efficient annotation method that facilitates
fast hierarchy updates by allowing region properties to be
updated throughout the hierarchy with a minimal amount
of recalculation. In §4, we present the actual hierarchy mod-
ification algorithms, explaining why they are necessary op-
erations using examples from our work with abdominal CT
scans. In §5, we briefly describe how to identify features
from the partition hierarchy using a Bayesian classifier. In
86 we present our results and in §7 we outline our future
work and conclude.

2. HIERARCHY GENERATION

We start our presentation of partition hierarchies by defin-
ing a few terms:

DEFINITION 1. Given an image I, a partition P(I) of
I is a set {R1,...,R-} of non-empty and non-overlapping
contiguous regions Ri. (So U, Ri =1 and Vi,j € [1,7],1 #
j = R;N Rj = @)

DEFINITION 2. Suppose Pr(I) = {Ry1,...,Rr(p)} and
P.(I) = {Rec1,...,Rer(ey} are two partitions of I, then we
write Py C P. iff for every region Re; € P.(I) there exists a
region subset S; C Py(I) such that Re; = |JSs, and further-
more, ¥i,j € [1,7(c)],i #j = S; N S; = 0. (In other words,
every region in P is the union of one or more regions in Py,
and no region from Py is in more than one of these unions:
thus, we say that P is a coarser partition of I than Py.)

DEFINITION 3. Given a region set R = {Ry,...,R.}, a
region adjacency graph (RAG) RAG(R) of R is a graph
with nodes R; and edges represented by a function w : R X
R — R". There is an edge between any given pair of regions
R; and R; iff w(Rs, R;) # oo, in which case w(R;, R;) gives
the weight on the edge.

DEFINITION 4. A partition hierarchy H(I) of I is a
sequence of n pairs ((P1, RAG1), ..., (Pn, RAG,)) such that
each P; is a partition of I, Py C ... C P, and Vi € [1,n] -
RAG; = RAG(P,).

Generating a partition hierarchy from an image is a bottom-
up process. First, an initial partition of the image is some-
how generated: in our approach, this is done using the wa-
tershed transform [3, 5, 11]. This initial partition forms the
bottom layer of the hierarchy. Each higher layer is then gen-
erated by merging some of the regions in the layer below it.

The choice of which regions to merge is made by whichever
algorithm is in use: in our approach, we use the waterfall
algorithm [5, 10]. The usual approach taken by such algo-
rithms is to try and merge regions which are in some sense
similar to each other (e.g. the difference between their mean
grey values is tolerably small). The waterfall algorithm es-
sentially works this way by performing a watershed-from-
markers [4] process on the RAG of the current partition (or,
more precisely, its minimum spanning tree): the effects of
this depend on the weights assigned to the edges of the RAG,
but these are usually some measure of the similarity between
adjacent regions, e.g. the height of the lowest pass point on
their shared boundary.

As well as generating the actual sequence of image par-
titions, the hierarchy generation process must construct a
RAG for each partition/layer of the hierarchy. (These graphs
provide the information needed to preserve region contigu-
ity when modifying the hierarchy using the algorithms de-
scribed in §4.) This can easily be done at the lowest layer
of the hierarchy by iterating over the labelling produced by
the watershed transform and adding edges to the RAG when
adjacent points have differing labels. If the waterfall algo-
rithm is being used, higher-level RAGs are then produced
naturally from the initial RAG during the course of the al-
gorithm; other algorithms may require alternative methods
of RAG generation.

3. PROPERTY GENERATION

Having constructed a partition hierarchy, the next step is
to annotate each node in the hierarchy with some properties
of the region it represents. For the purposes of this paper,
the properties used are area, mean grey value, grey value
variance and elongatedness, but these are just illustrative,
and many other properties can be used as well.

Our approach to property generation uses two phases.
In the first phase, we use the original image, and its la-
belling produced by the watershed transform, to calculate
the properties of the lowest-layer nodes. This is done by
raster-scanning over both simultaneously and updating the
region properties as we go. The second phase of the algo-
rithm then generates the properties for higher-layer nodes
by combining the properties of their children. As we will see
in §4, this sort of approach facilitates fast updating of the
tree, because the lowest partition never changes (thus the
lowest-layer region properties never need to be recalculated)
and updates to higher layers can be performed without going
back to the original image.



The appendix details how the individual properties men-
tioned are generated.

4. HIERARCHY MODIFICATIONS

There are various operations we may want to perform on
the annotated partition hierarchy. The most crucial of these
is feature identification, whereby we mark a region in the hi-
erarchy as a feature of interest. This process involves updat-
ing the hierarchy to reflect the fact that the marked region
is no longer considered part of the image. We might also
want to simply rearrange the partitions without identifying
any features, e.g. by transferring a child from its parent to
another node in the layer above, or by splitting a region into
several pieces: the motivations for these are explained be-
low. The first two operations have a lot in common: feature
identification involves disconnecting a subtree and marking
its root, whilst moving a subtree involves disconnecting it
from its original parent and adding it to its new parent.
The disconnection procedure is thus explained first.

4.1 Disconnecting a Subtree

The algorithm we have developed for disconnecting a sub-
tree is best explained with an example. Consider Figure 3,
which shows a simple striped image (a) and its correspond-
ing partition hierarchy (b). Let us refer to regions using a
2D region locator of the form (layer,index) (where layer
is numbered from 0 at the bottom of the hierarchy), and
suppose we want to disconnect region (1, 1) from the hierar-
chy. The first step is to break the link between (1, 1) and its
parent, (2,0). We then recursively proceed down the sub-
tree rooted at (1,1) and disconnect the region subset at that
layer from the rest of the RAG for the layer: for instance, at
layer 0 we disconnect the region subset {3,4} from the rest
of the layer 0 RAG, but keep the edge actually connecting
3 to 4. The result is shown in (c). At this stage, the hierar-
chy (including the RAGs) is correct for all layers up to and
including the layer in which the root of the subtree used to
reside (1 in this instance). However, by disconnecting the
subtree we have disconnected region (1, 0) from region (1, 2)
in the image: merging them into region (2,0), as is currently
the case, would now be an invalid operation. We therefore
have to proceed recursively up the tree and rectify it. At
each level, we have a set of child nodes and their purported
parent. We determine the connected components of the chil-
dren and ensure that each connected component has its own
parent in the layer above: the properties of each parent are
calculated from the children using property combination as
described in §3. The RAG for the layer above is updated
accordingly (this is done using the child layer RAG: parent
A is adjacent to parent B iff one of A’s children is adjacent
to one of B’s children). We then recurse, using the par-
ent of the original purported parent as the new purported
parent, and the union of the set of parents and the set of
children of the new purported parent as the new set of chil-
dren. This eventually produces a partition forest (e) as the
result, something we expect since removing (1,1) from the
image has divided the remainder into two pieces.

4.2 Feature Identification

Given the subtree disconnection algorithm, feature identi-
fication is now trivial: we disconnect the subtree, then mark
the root of the subtree as being a particular feature.

Figure 2: The motivation for subtree moving: the
red and yellow regions in (a) should be merged as
they are both part of the vertebra, but the low grey
level of the yellow region leads it to be incorrectly
subsumed into another nearby region (b). Region
moving allows us to move the sub-region back to its
correct parent (c¢). The red region in (c¢) will now
eventually be merged into a single region for the
entire vertebra.

4.3 Moving a Subtree

It can sometimes make sense to move a subtree by altering
the parent pointer of its root to point to another node in the
parent’s layer. For instance, small pieces of a feature which
are unclear on an image may get subsumed into adjacent
regions with which they seem to share more in common (see
Figure 2(b)). This can be corrected by transferring the sub-
region to the parent which makes more semantic sense (see
Figure 2(c)).

To do this, we first require that the piece being moved be
adjacent to its new parent: this ensures that the resulting
region will be contiguous. This can easily be checked using
the child layer RAG (i.e. the one for the layer in which the
piece resides) by testing whether the piece is adjacent to any
of the children of the new parent. Provided this condition is
satisfied, we move the subtree by disconnecting it from its
existing parent (as described above) and adding it as a child
of its new parent. In the process, the region properties for
all the nodes on the path from the new parent up to the root
of its tree (inclusive) will need to be updated using property
combination.

4.4 Splitting a Region

The final hierarchy operation we will describe is that of
splitting an existing region. This involves taking a node
at layer 1 of the hierarchy or above, and dividing it into
a number of smaller (but still contiguous) regions, formed
from mutually disjoint subsets of its children. This can make
sense when too many regions were merged into one from one
layer of the hierarchy to the next (the waterfall algorithm
is a quickly-converging process, which is generally desirable,
but occasionally problematic), or when it would be helpful
to remove a single troublesome child region from its parent
(see Figure 4).

The process works by adding new nodes in the layer of
the region to be split. To divide the region into n pieces, we
add n — 1 new nodes, and change the parent pointers of the
children to assign them to their new respective parents. We
also update the region adjacency graph of the parent layer
(i.e. the one in which the split region resides) accordingly.
Finally, we update the region properties for the new parent
nodes and the nodes on the path from them to the root
of the split region’s tree (inclusive). Figure 3(f) shows the
result of splitting region (2,0) of the partition hierarchy in
Figure 3(b) into two regions: one containing (1,0) and the



) A simple striped image

(b) A possible partition hierarchy cor-

(c¢) Disconnecting the subtree rooted

responding to the image: solid lines at (1,1): After the initial disconnec-
are part of the tree, dashed lines are tion

edges in the region adjacency graph

for a particular layer of the tree

(d) After rectifying the hierarchy up
to layer 2 (the bottom layer is num-
bered 0)

(e) The final result, after rectifying
the hierarchy up to layer 3

(f) The result of splitting region (2,0)
of the hierarchy in (b) into two

Figure 3: Hierarchy modifications

Figure 4: The motivation for region splitting: in (a),
only the two small (red and blue) regions should be
merged to form a rib, but the waterfall merges all
three (b). Region splitting allows us to separate the
overmerged region and extract the rib sub-region

(c)-

other (1,1) and (1,2).

5. REGION CLASSIFICATION

In §4, we discussed how the feature identification process
updates the partition hierarchy; in this section, we explain
how the actual decision is made to identify a region as a
feature. Our initial approach has been to use a Bayesian
classifier to quantify the extent to which a region resembles
a feature of interest, based on some subset of the generated
properties for that region. For instance, a rib classifier might
be designed in terms of four properties X1, ..., X4: the area,
max grey value, mean grey value and elongatedness of a re-

gion. (As a first approximation, ribs might be distinguished
by having a relatively small area, a high max grey value, a
relatively high mean grey value and a noticeable, but not
extreme, elongatedness.) Given P(X;|Rib) (i.e. a vector
containing the probabilities of each value of X; given that
Rib = T or Rib = F) for each X;, and letting rib denote
Rib =T, —rib denote Rib = F and x; denote a specific value
of X;:

P(rib) H P(x;|rib)

> o Tren)

re{rib,~rib}
So far, the probabilities involved have been defined empir-
ically, but we intend in future to derive them from a training
set of images.

6. RESULTS

Our program automatically generates a partition hierar-
chy from each slice (as per §2), together with relevant prop-
erties for every region in the hierarchy. The user can vi-
sualize the hierarchy by navigating through a sequence of
images representing its partitions. A feature corresponding
to an individual region in the hierarchy can then be selected
interactively. This process can be repeated for each desired
feature. Figure 5 illustrates the result of selecting the aorta,
kidney, liver, spleen and vertebra.

As already stated, however, the ultimate goal of our ap-
proach is to allow for automatic identification of features,
with minimal user input necessary. Ribs were chosen as the

P(riblzy,...,z4) =




Figure 5: A sample result obtained by interactively
selecting interesting regions in our partition hier-
archy: aorta (red), kidney (yellow), liver (purple),
spleen (cyan) and vertebra (orange)

initial target of our algorithm because their high grey levels
make them one of the easier features to identify on an image.
For the actual identification we used a Bayesian classifier (as
per §5) and have obtained promising results. Figure 6 shows
the result of identifying the ribs in a CT slice. This is fully
automatic and requires no input from the user.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we suggested an approach to automatic seg-
mentation and feature identification in abdominal CT im-
ages, and presented some promising preliminary results. At
this stage of the work, our focus has been on the new algo-
rithms used.

Future work will aim to increase the level of automa-
tion, in particular by developing automatic identifiers for
other features of interest, such as major organs and tumours.
We plan to publish comprehensive statistical results for our
method in due course. We have achieved a moderate level of
success in automatically identifying ribs, and our experimen-
tation with interactive region identification has suggested
that many of the other interesting features in an image may
be readily identifiable if the right region properties are used.
To that end, we are currently investigating shape and tex-
ture description methods for regions [6, 7, 8], with a view to
identifying sets of properties that can be used to determine
which regions represent features.

We are also interested in looking at how to handle the case
where both a region and one of its ancestors (e.g. its par-
ent) in the hierarchy have been classified as being the same
feature, and with similar classification probabilities. Pick-
ing the region with the higher probability may not always
be the most appropriate choice.

Finally, we want to look into the possibility of sub-feature
classifiers: as we have seen, two parts of a feature can be
merged into different parents, and if we want to automat-
ically modify the hierarchy to correct this, then we need
a way of picking out sub-features which should have been
merged together.
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APPENDIX
Property Generation Details

Notationally, we will represent a region in terms of its pixel
set P, and f(p) will denote the grey value of the origi-
nal image at pixel p. Property combination will be illus-
trated by showing how to generate properties for a parti-
tioned region P = J, P; (where P; N P; = () from those
of its children P;s. For convenience, in what follows denote
Foni =3 pep, (f(p)™ and Fon =37, Fri = 30 e p(f(p)™

The area for each lowest layer node can be trivially deter-
mined by adding 1 to the relevant count (referenced using
the labelling) for each pixel of the image. Combining areas
is likewise trivial: |P| = >, |P;|. Alternatively, |P;| = Fo:
and |P| = Fo.

The mean grey value for each lowest layer node can be
determined by summing the grey values of pixels in the re-
gion (as specified by the labelling) during the raster scan,
then dividing by the region area afterwards. Mean grey
values can be combined using mp = 1/|P|3_, |Pi|mep,; or
mp, = F1;/Fo;, mp = F1/Fp.

The grey value variance for a region with pixel set P is
defined as vp = 1/|P|Y cp(f(p) — mp)?. Alternatively,
vp, = Fai/Foi — (F1,i/Fo,)? and vp = Fy/Fy — (F1/F)?,
and so the variances may be computed in a single scan.

Combining grey value variances may be achieved using the
formula vp = 1/|P| Y, | Pi|(vp, + (mp, — mp)?), which can
be derived as follows:

> |Pil(mp, —mp)®
= ZFo,i(Fl,i/FO,i - Fl/F0)2

= Y (Fii/Foi — 2F1F1i/Fo + Fo i F{ [ Ff)
i

= Z(Ffz/FO,l) — 2(F1/Fp) ZFM + (F12/F02) ZFM

7

= Z(FEZ/FOZ) — (F12/F0)

7

= [P — (F{/Fo)] =) [Fai -

7

= |Plop = |Pilvr,

3

(Ffi/Fo.)]

Finally, the elongatedness of a region is defined as the ra-
tio between the lengths of the major and minor axes of the
minimum bounding ellipse of the region. These can be deter-

mined using a method known as principal component anal-
ysis. Firstly, for a region with point set P, we define the uv
(central) moment of P as piuy = 1/|P[ 32, yep(z—2)"(y—
9)". Note that in this, Z and § are the z and y components
of the region centroid, respectively. The covariance matrix
of P is then defined as: K20 pa1

M1l Ho2
can be calculated as the ratio of the square roots of the
eigenvalues A1 > A2 of this matrix, |[vA1]/|vA2|. Calcu-
lating the elongatedness throughout the partition hierarchy
can be done indirectly by calculating the three moments
20, p11 and po2 at each lowest-layer node, combining the
results to give the corresponding moments for higher-layer
nodes, and then determining the elongatedness via eigen
analysis at every node. Calculating and combining the mo-
ments uses a very similar approach to that employed for
grey level variance, except that the update formula is now

fy = 1/|PI 3, |Pil (s + (Zp, — Zp)"“(p, — §P)").-

. The elongatedness



