
Object-Environment Collision Detection using Onion BSPs

Stuart Golodetz

1 Introduction

In my last article [7], I described how to automati-
cally generate navigation meshes to support the nav-
igation of agents around 3D environments (e.g. game
worlds), as implemented in my homemade hespe-
rus engine [5]. However, there is far more to such
navigation than simply mesh generation: it remains
to be shown how to determine where (if anywhere)
an agent can be found on the mesh and how to
make best use of the mesh when allowing both user-
controlled and AI agents to move around the envi-
ronment. Agent movement must necessarily interact
with an implementation’s physics system, since the
navigation mesh only covers the walkable surfaces of
the world and there is a need to ensure that agents
are simulated correctly even when they are not on
the mesh. In particular, any implementation needs
to ensure that agents do not collide with either the
world or each other, and that the effects of forces such
as gravity are properly applied to them when not on
the mesh. For that reason, before tackling the agent
movement problem itself, it is important to take a
step back and look at how the physics system in hes-
perus works.

As a first step, I want to focus this article on a
way of detecting collisions between objects (including
agents) and their environment, via the construction
of a special binary space partitioning (BSP) repre-
sentation of the world that I call an onion BSP (for
reasons that will be explained). Onion BSPs are a
simple extension of BSP trees for multiple configu-
ration spaces, based on the ideas of van Waveren for
Quake III Arena in [17]. The collisions (also known as
contacts) that we detect can be fed to the rest of the
physics system for later resolution. Future articles
will focus on how to detect object-object collisions

using a technique called Minkowski Portal Refine-
ment [15], and how to combine the techniques into
a rudimentary physics system, before we return to
the original problem of agent movement. Readers
who are interested in a more general look at games
physics engine development are advised to take a look
at the excellent (and aptly-named) book by Milling-
ton on the topic [13].

The organisation of this article is as follows: in §2,
I briefly revisit the ideas behind binary space par-
titioning; in §3, I describe how to construct onion
BSPs; in §4, I describe how to perform (swept) col-
lision detection between objects and onion BSPs us-
ing an algorithm for finding the first point at which a
half-ray crosses a wall in the world; and in §5 I discuss
the limitations of this approach and briefly compare
it to a related approach that achieves the same effect
by moving the planes of a normal BSP at runtime.

2 Binary Space Partitioning

Binary space partitioning is a technique for repre-
senting n-dimensional space as a binary tree (known
as a BSP tree) by recursively dividing it into two
using hyperplanes (the n-dimensional generalisation
of planes). It was originally introduced by Fuchs
et. al. [4] in 1980, and saw widespread use in first-
person games of the Quake era (e.g. see [1]) as a
way of representing 3D polygonal game worlds, most
notably because it provided a way of rendering a
world’s polygons in either back-to-front or front-to-
back order [4, 9] without the need for a z-buffer on the
graphics card (z-buffers once used to be quite costly).
As graphics cards have matured, commercial games
have moved away from binary space partitioning as
a rendering approach, because traversing a BSP tree
is relatively slow in comparison to simply throwing

1

ab c

d

ef

g

h

ij k

6

6

-7 � 5

?

8

?

4

-9 � 3

6

10

6

2

-11 � 1

?

0

(a) (b)

(c)

Figure 1: A BSP example for a simple 2D world with two rooms, connected by a corridor: (a) shows a
top-down view of the world, where the arrows represent the facings of the world polygons and the dashed
lines represent the split planes chosen when constructing the BSP in (b); (b) shows the BSP tree that is
constructed for the world based on the chosen split planes; (c) shows what a 3D version of the world looks like
in hesperus, with portals (doorways) rendered as translucent polygons to illustrate the boundaries between
the empty leaves (a, e and i) of the BSP. (Note that the 3D version actually has additional floor and ceiling
polygons, but we ignore that here for the purposes of explanation.)

2

large numbers of triangles at the graphics card and
letting the z-buffer handle the rendering order, but
BSP trees remain interesting as a basis for collision
detection and constructive solid geometry techniques
[3, 11].

An example BSP tree is shown in Figure 1. Each
node of the tree represents a convex subspace of the
world being partitioned; moreover, the leaves of the
tree represent a partition of the entire space, i.e. they
are mutually disjoint and their union is equal to the
space. Each branch node has an associated split
plane (a line with facing in 2D) that divides the sub-
space represented by the node in two. Each leaf node
contains the polygons (line segments in 2D) that fall
within the subspace it represents, and carries a flag
that indicates whether the subspace represented by
the leaf is empty (i.e. navigable by an agent, denoted
as ⊥) or solid (non-navigable, denoted as >). The
BSP tree as a whole can be used to decide whether
or not any given point in the world lies in empty or
solid space in O(h) time, where h is the height of
the tree, by the simple means of classifying the point
against the split planes in the tree, starting from the
root, and recursing down the relevant side of the tree
at each stage until hitting a leaf.

Constructing a BSP tree for a polygonal world is
also done recursively, starting from the set of all the
polygons in the world. At each recursive step, one of
the current set of polygons whose plane has not been
used further up the tree is chosen as the split polygon,
and its plane is used to split the other polygons into
two sets, one of polygons that are in front of the plane
and one of those that are behind it. (If no suitable
split polygon can be found, then we create a leaf of
the tree to contain the current set of polygons and
return.) If a polygon straddles the plane, it is split,
with its two halves being placed in the appropriate
sets. If a polygon lies on the plane, it is put into either
the front or back set based on the orientation of its
normal with respect to the plane. The two sets of
polygons are then processed recursively to construct
the subtrees of the current node. Finally, a branch
node is constructed from the split plane and the two
subtrees.

An extremely detailed description of BSP construc-
tion, together with diagrams that clarify precisely

how the process works, can be found in [8]; read-
ers may additionally wish to take a look back at a
previous article I wrote for Overload [6].

3 Onion BSPs

As mentioned in the previous section, standard BSP
trees can be used to determine whether individual
points are in empty or solid space; moreover, this ex-
tends to line segments – there is a relatively straight-
forward BSP algorithm that will allow us to find the
first transition point at which a line segment crosses
from empty to solid space (e.g. see [2, 10, 16]). This
can form the basis for a simple collision detection
scheme for point-based agents – at each frame, we
can test the line segment representing an agent’s pro-
posed movement for that frame against the tree, tak-
ing the first transition point as the point of collision
if the agent tries to walk into a wall.

Unfortunately, however, most agents in 3D games
are not point-based, so we need a way to handle ob-
jects with extent. The way I describe here is due to
van Waveren [17] and uses the notion of configura-
tion spaces I described in [7]. An alternative, similar
approach, that works by modifying a normal BSP at
runtime, is discussed in §5. Both of the approaches
described are based on the same principle – that per-
forming collision detection between an object with
extent and the world is equivalent to performing col-
lision detection between a point at the centre of the
object and a copy of the world that has been suitably
expanded in accordance with the size of the object.

The van Waveren approach is an offline method
designed for brush-based 3D environments (that is,
environments built up by combining simple, convex
polyhedra). Agents are represented by axis-aligned
bounding boxes (AABBs); each class of agent may
have multiple AABBs for different poses (e.g. stand-
ing or crouching). At level compilation time, the
brushes of the environment are expanded for each
AABB and the faces of the expanded brushes are
unioned together to form an expanded world for that
AABB. Each of these expanded worlds can be com-
piled into a BSP tree, allowing us to perform colli-
sion detection for an object represented by the corre-

3

a

b

c

d

e

f

g

h i

62

?0

-3 �1

66

?4

-7 �5

(a) (b)

Figure 2: An example 2D world (a) and one possible onion BSP for it (b). The coloured lines (red and green)
denote two separate configuration spaces. Their polygons (shown as numbered, oriented line segments) are
compiled into the same onion BSP as shown. Individual leaves (labelled with letters) can be empty (⊥) in
one space and solid (>) in another, e.g. leaf e is empty in the red space but solid in the green one.

sponding AABB. However, maintaining multiple BSP
trees is inconvenient because then objects that are in
the same physical location but have different sizes
cannot be resolved to a leaf in any particular tree
– we would much prefer to have a single tree that
represents all of the information available.

We can achieve this by constructing a different type
of BSP tree that I call an onion BSP1. Onion BSPs
are a generalisation of standard BSPs in which we
replace the empty/solid flag in each leaf node with
a vector of flags indicating whether the leaf is emp-
ty/solid in each configuration space associated with
an AABB. Figure 2 shows two configuration spaces
generated for an example world (the original, unex-
panded world is not shown) and an onion BSP that
might be generated for it.

1For the interested reader, the name ‘onion BSP’ comes
from the idea that the expanded worlds look rather like the lay-
ers of an onion when superimposed in an image. This analogy
is not strictly accurate, because the various different AABBs

3.1 The Compilation Process

Onion BSP compilation is in principle much the same
as BSP compilation (see §2), but slightly trickier be-
cause we have to test the solidity of each leaf in each
configuration space rather than getting it for free as
part of the compilation process. An explanation of
this testing process is deferred to the next section,
but it also has an impact on the main part of the
compilation. In particular, the test involves check-
ing an arbitrary point in the leaf for solidity in each
configuration space (the solidity of any point in the
leaf is guaranteed to be the same as that of the en-
tire leaf), so we will need (a) a way of determining
an arbitrary point in a leaf, and (b) a way of testing
a point for solidity in a configuration space. As will
be seen, determining an arbitrary point in a leaf will
involve knowing the set of split planes on the path

will not in general nest inside each other, but the name is nev-
ertheless both convenient and suggestive.

4

Listing 1 Building an Onion Tree

function build_tree
: (polys: Vector <Polygon >) → OnionBSPTree

var nodes: Vector <Node >;
var ancestors: Vector <Plane >;
var polyIndices: Vector <PolyIndex >

:= {(i,true) | 0 ≤ i < |polys|};
build_subtree(ref polys , polyIndices ,

ref nodes , ref ancestors);
return make_onion_bsp(nodes);

class PolyIndex
var index: int;
var splitCandidate: boolean;

from the root of the tree to the leaf, so these should
be maintained during compilation.

The resulting main compilation process is shown
in Listings 1 and 2. The key thing to note is the
way in which a set of split planes is maintained in
order to facilitate solidity testing – we add the current
split plane to the set before each recursive call to
build subtree and remove it again afterwards, so
that whenever we reach a leaf it will contain precisely
those split planes on the path from the root of the tree
to the leaf. Note that orientation is important, so the
current split plane must be reversed when recursing
into the right-hand subtree.

3.2 Determining Leaf Solidity

A solidity descriptor for a leaf in an onion BSP is a
vector of flags indicating whether the leaf is empty or
solid in each configuration space for which we com-
piled the BSP. It is common for a leaf to be empty
in one configuration space and solid in another – for
example, a leaf might be empty in the configuration
space corresponding to the crouch pose of an agent,
but solid in the configuration space corresponding to
the standing pose, indicating that the agent can tra-
verse the leaf whilst crouching but not whilst stand-
ing (e.g. think of a low tunnel). To determine a leaf’s
solidity descriptor, we find an arbitrary point in the
leaf and check its solidity in each configuration space
in turn; the resulting empty/solid results are com-
bined to form the full solidity descriptor. To test

Listing 2 Building an Onion Subtree

function build_subtree
: (polys: ref Vector <Polygon >;

polyIndices: Vector <PolyIndex >;
nodes: ref Vector <Node >;
ancestors: ref Vector <Plane >) → Node

var splitter: Plane
:= choose_splitter(polyIndices);

// If there were no suitable split candidates ,
// this is a leaf.
if splitter = null then

var solidity: DynamicBitset
:= determine_leaf_solidity(ancestors);

var indicesOnly: Vector <int >
:= {i | (i,_) ∈ polyIndices };

nodes.push_back(
Leaf(| nodes|, solidity , indicesOnly)

);
return nodes.back ();

var backPolys , frontPolys: Vector <PolyIndex >;
for each pi@(index , splitCandidate) ∈ polyIndices

var poly: Poly := polys[index];
switch classify_against_plane(poly , splitter)

case CP_BACK:
backPolys.push_back(pi);
break;

case CP_COPLANAR:
if splitter.norm (). dot(poly.norm ()) > 0 then

frontPolys.push_back ((index , false));
else

backPolys.push_back ((index , false));
break;

case CP_FRONT:
frontPolys.push_back(pi);
break;

case CP_STRADDLE:
(back , front) := split_poly(poly , splitter);
polys[index] := back;
polys.push_back(front);
backPolys.push_back(pi);
frontPolys.push_back(

(|polys| - 1, splitCandidate)
);
break;

ancestors.push_back(splitter);
var left: Node

:= build_subtree(frontPolys , nodes , ancestors);
ancestors.pop_back ();

ancestors.push_back(splitter.flipped ());
var right: Node

:= build_subtree(backPolys , nodes , ancestors);
ancestors.pop_back ();

var subRoot: Node
:= Branch (|nodes|, splitter , left , right);

nodes.push_back(subRoot);
return subRoot;

5

Listing 3 Determining Leaf Solidity

function determine_leaf_solidity
: (ancestors: Vector <Plane >) → DynamicBitset

// Assumed available from elsewhere:
// * mapTrees: Vector <BSPTree >

// Find an arbitrary point within the leaf with the
// specified ancestor planes.
var p: Vec3 := arbitrary_leaf_point(ancestors);

// Classify the point against each map tree to
// determine the solidity descriptor for the leaf.
var solidity: DynamicBitset (| mapTrees |);
for each mti ∈ mapTrees

var leaf: BSPLeaf := mti.find_leaf(p);
solidity[i] := leaf.is_solid ();

return solidity;

points’ solidity in a configuration space, we build
a normal BSP tree (called a map tree in the code)
for the space at the start of the compilation process
and later classify any relevant points with regard to
it. The top-level process to determine leaf solidity is
shown in Listing 3.

3.2.1 Finding an Arbitrary Leaf Point

To find an arbitrary point in a leaf, recall that each
leaf represents a convex subspace of the world. Our
first intuition might be to create an explicit represen-
tation of the leaf as a convex polyhedron and then
compute the average of the midpoints of the poly-
hedron’s faces as our point. This does in fact work
perfectly for fully-bounded leaves (see Figure 3(a)),
but unfortunately fails for unbounded ones (see Fig-
ure 3(b)). Fortunately, in practice, there is an easy
solution to this problem: we can simply stipulate
that the world we are representing is bounded by an
inward-facing box, thereby ensuring that every leaf is
bounded (see Figure 3(c)). This is clearly a reason-
able assumption in the context of representing a 3D
world, since it would not be meaningful for such a
world to be infinite. (The interested reader may wish
to take a look at [14], where a similar approach is
taken to deal with unboundedness in a related linear
programming problem.)

The algorithm itself is shown in Listing 4. It is

Listing 4 Finding an Arbitrary Leaf Point

function arbitrary_leaf_point
: (ancestors: Vector <Plane >) → Vec3

// Step 1: Make an inward -facing convex polyhedron
// around the leaf.

// Make an array of possible bounding planes: these
// are the ancestor planes themselves , plus the
// planes that bound the 3D world. The planes are
// specified as ax + by + cz - d = 0.
const HALFWORLDBOUND: double := 100000;
var planes: Vector <Plane > := ancestors;
planes.push_back(Plane ((1,0,0), -HALFWORLDBOUND));
planes.push_back(Plane ((-1,0,0), -HALFWORLDBOUND));
planes.push_back(Plane ((0,1,0), -HALFWORLDBOUND));
planes.push_back(Plane ((0,-1,0), -HALFWORLDBOUND));
planes.push_back(Plane ((0,0,1), -HALFWORLDBOUND));
planes.push_back(Plane ((0,0,-1), -HALFWORLDBOUND));

var faces: Vector <Poly >;
for each pi : Plane ∈ planes

// Build a large initial face on each plane.
var face: Poly := make_large_poly(pi);

// Clip it to the other planes.
var discard: bool := false;
for each pj : Plane ∈ planes

if j = i then continue;
switch classify_against_plane(face , pj)

case CP_BACK:
// Face entirely out of leaf.
discard = true;
break;

case CP_COPLANAR:
// Shouldn ’t happen: ancestors are unique.
throw "Unexpected duplicate plane";

case CP_FRONT:
// Face entirely in leaf.
continue;

case CP_STRADDLE:
// Part of face in leaf , part not.
(_,front) := split_poly(face , pj);
face := front;
break;

if discard then break; // early out

// Add surviving faces to the array.
if not discard then faces.push_back(face);

// Step 2: Compute the average of the polyhedron
// face midpoints.
var denom: int := 0;
var p: Vec3 (0,0,0);
for each face: Poly ∈ faces

for each v ∈ face.vertices ()
p := p + v;
denom := denom + 1;

assert denom 6= 0;
p := p / denom;
return p;

6

-

-

�

�

6 6

? ?

v
v

v
v v

(a)

6 6

(b)

6 6

-

-

�

�

6 6

? ?

v
v

v vv

(c)

Figure 3: Finding an arbitrary point in a leaf of a simple 2D world with a single room (shown in black). In
(a), we can successfully build a convex polyhedron for the bounded leaf representing the room itself and then
average the midpoints of the polyhedron’s faces (shown in red) to find a suitable point (shown in green). In
(b), the same procedure fails for the unbounded leaf behind the room’s topmost wall. In (c), we rectify the
problem by adding bounding planes (shown in blue) around the world as a whole. This ensures that all of
the leaves are bounded, allowing the method to work.

7

called with the set of ancestor planes leading down
to the given leaf in the tree (recall that these are
maintained as part of the top-level compilation pro-
cess). These are augmented with the planes of the
inward-facing box that we are assuming bounds the
world. We then construct an extremely large polygon
on each of the planes in turn, and clip it to the other
planes (see [5] for the implementation details). The
set of polygons that results forms a convex polyhe-
dron representing the (bounded) leaf. As previously
stated, we finally compute the midpoint of each face
of the polyhedron and average them to produce an
arbitrary point that is guaranteed to be inside the
leaf.

4 Collision Detection

Recall that our goal is to detect collisions between
moving objects of various sizes and a stationary
world. The desired output of our collision detection
approach is a set of collisions (or contacts), each of
which is specified by a collision point (a first point at
which the moving object touches the world), a colli-
sion normal (the normal of the surface that is hit by
the moving object) and a collision time (a number in
the range [0, 1] indicating at what point during the
movement the collision occurs).

Having constructed an onion BSP for the world, it
is now possible to perform collision detection against
it for objects with a specific AABB, using a variant
of the ‘find first transition’ algorithm mentioned in
§3 (see Listing 5). The key difference from the ver-
sion for normal BSPs is that the leaf solidity test at
the top of the fft sub function is performed for a
specific configuration space (e.g. one corresponding
to an agent’s crouching pose); in all other respects
the two are essentially the same.

The algorithm is initially called on the movement
ray (which is just a line segment) of an agent for
the current frame and the root node of the onion
BSP, and proceeds recursively, ultimately producing
a ‘transition’ to indicate its result (transitions are ei-
ther (a) RAY E, indicating that the entire movement
ray is in empty space, (b) RAY S, indicating that the
entire movement ray is in solid space, or (c) a triple

Listing 5 Find First Transition (Onion BSP Version)

function fft_sub: (src: Vec3; dest: Vec3;
node: Node) → Transition

// Assumed available throughout :
// * cSpace: int [the configuration space index]

var leaf: Leaf := node.as_leaf ();
if leaf 6= null then

return leaf.is_solid(cSpace) ? RAY_S : RAY_E;

var br: Branch := node.as_branch ();
var left , right: Node := br.left(), br.right ();
var splitter: Plane := br.splitter ();
var cpSrc , cpDest: PlaneClassifier;
switch classify_against_plane
(src , dest , splitter , ref cpSrc , ref cpDest)

case CP_BACK:
return fft_sub(src , dest , right);

case CP_COPLANAR:
var trLeft: Transition :=

fft_sub(src , dest , left);
var trRight: Transition :=

fft_sub(src , dest , right);
if trLeft.class = trRight.class then

switch trLeft.class
case RAY_E|RAY_S:

return trLeft;
default:

var dLeft: double := |src− trLeft.loc|2;
var dRight: double := |src− trRight.loc|2;
return dLeft < dRight ? trLeft : trRight;

else if trLeft.class = RAY_E2S|RAY_S2E then

return trLeft;
else if trRight.class = RAY_E2S|RAY_S2E then

return trRight;
else return RAY_E;

case CP_FRONT:
return fft_sub(src , dest , left);

default: // case CP_STRADDLE
var mid: Vec3 :=

intersect(src , dest , splitter);
(near ,far) := cpSrc = CP_FRONT ?

(left ,right) : (right ,left);
var trNear: Transition :=

fft_sub(src , mid , near);
if trNear.loc 6= null then return trNear;
var trFar: Transition :=

fft_sub(mid , dest , far);
switch trFar.class

case RAY_E:
return trNear.class = RAY_E ? RAY_E :

Transition(RAY_S2E , mid , splitter);
case RAY_S:

return trNear.class = RAY_S ? RAY_S :
Transition(RAY_E2S , mid , splitter);

case RAY_E2S:
return trNear.class = RAY_E ? trFar :

Transition(RAY_S2E , mid , splitter);
default: // case RAY_S2E

return trNear.class = RAY_S ? trFar :
Transition(RAY_E2S , mid , splitter);

8

v vs
(a) The movement ray is entirely on one
side of the plane (shown in blue): recurse
down that side.

v vs

(b) The movement ray lies in the plane itself: recurse
down both sides and combine the results. In this case,
both sides have a transition, so we take the nearer one.

v

v
s

(c) The movement ray straddles the plane: split it and
recurse down the near side first. In this case, the near
half is entirely in empty space, so we then recurse down
the far side to find the transition point.

Figure 4: A few of the recursive cases for the ‘find first transition’ algorithm, illustrated on a movement ray
from an agent’s current position in empty space (shown in green) to its attempted position in solid space
(shown in red).

(RAY E2S or RAY S2E, point, splitter), indicating
that the movement ray first transitions from empty
to solid, or solid to empty, space at the specified point
on the specified split plane). At each recursive step,
the relevant segment of the movement ray (initially,
all of it) is classified against the split plane of the cur-
rent node, and appropriate action is taken based on
the result. If the movement ray segment is entirely
on one side of the plane, we recurse down that side
of the tree. If the movement ray segment is on the
plane (the coplanar case), we pass it down both sides
of the tree and subsequently combine the results. If
the movement ray segment straddles the plane, we

split it and pass the half of it near the start of the
segment down the corresponding side of the tree. If
this yields a non-trivial transition, we return it; oth-
erwise, we pass the other half down the far side of
the tree, and subsequently derive the result as shown
in Listing 5. When we eventually reach a leaf, we
return a transition based on the solidity of the leaf
in the configuration space in which we are interested
(this can be specified as an additional parameter to
the algorithm, or provided by some other means). A
few of the recursive cases are illustrated in Figure 4.

As mentioned, the ultimate result of the ‘find first
transition’ algorithm is either a trivial transition (the

9

movement ray is entirely in empty or solid space) or
a non-trivial one; in the latter case, the point and the
normal of the split plane found can be used directly
as the collision point and collision normal for a de-
tected collision. The collision time can be calculated
using simple ratios as follows. Denote the source and
destination endpoints of the movement ray as s and
d respectively, and the collision point as c. Then the
collision time is given by:

t =

√
|c− s|2
|d− s|2

The case of a trivial transition that lies entirely in
solid space needs special handling to ensure robust-
ness. In practical terms, this can very occasion-
ally happen due to rounding errors when the source
endpoint of the movement ray is on an empty/solid
boundary. A simple way of dealing with the issue is
to repeat the find first transition call with a source
endpoint that is moved back from the boundary by a
small amount (i.e. s′ = s− ε(d− s)).

The collisions we generate are fed into the physics
system for later resolution. I will explain how this
works in a future article.

5 Discussion

The approach that I have described thus far is a (com-
paratively) simple and effective way of detecting colli-
sions between moving objects and a stationary world,
but unsurprisingly it does have some limitations. One
potential drawback is that it is designed to work for a
small number of object sizes that are known at level
compilation time: this was not a problem for games
such as Quake III, but it makes the technique less
suitable for games that want to contain a wide va-
riety of differently-shaped characters, since compil-
ing large numbers of different configuration spaces
into an onion BSP would severely bloat the tree and
lead to slow level compilation times and poor perfor-
mance. Another drawback is that it only works for
objects that do not rotate: games that want to sup-
port more realistic physical simulation have to use
more complicated approaches (e.g. see [3, 13]).

A related approach that eliminates the first of these
limitations, whilst still providing acceptable perfor-
mance, was presented by Melax in [12]. The details
can be found in that article, but the essence of the
approach is to replace the ‘find first transition’ al-
gorithm with a variant that dynamically moves the
planes of a normal BSP for the world during ray test-
ing so as to simulate the configuration spaces for dif-
ferent types of object. This avoids the need to know
the sizes of the objects up-front, at the cost of mak-
ing ray testing somewhat more costly. The approach
was used successfully in the BioWare game MDK2.

6 Conclusions

In this article, I have described a simple and effective
technique (due to van Waveren) for detecting colli-
sions between moving objects and their surrounding
3D environment. While there are important limita-
tions to this technique in the context of realistic phys-
ical simulation (most notably the fact that it only
works for non-rotating objects), it has proved useful
in a games context because it can detect collisions
for translating objects quickly and accurately. The
alternative approach (due to Melax) mentioned in §5
builds upon this technique by allowing large numbers
of differently-shaped characters to be handled with-
out bloating the tree.

It remains to be shown how to detect inter-object
collisions and how to build a working physics system,
which I hope to address in future articles. We can
then return to our original problem of agent move-
ment, using the physics system and the environment’s
navigation mesh in tandem.

7 Acknowledgements

I would particularly like to thank the editorial team
for the effort that has gone into typesetting this ar-
ticle for publication. Many thanks also to the rest
of the Overload team for reviewing this article and
suggesting ways in which to improve it.

10

References

[1] Michael Abrash. Michael Abrash’s Graph-
ics Programming Black Book. Coriolis Group
Books, special edition, 1997.

[2] Jim Arvo. Linear-Time Voxel Walking for Oc-
trees. Ray Tracing News, 1(12), March 1988.

[3] Christer Ericson. Real-Time Collision Detection.
Morgan Kaufmann, 2005.

[4] Henry Fuchs, Zvi M Kedem, and Bruce F Nay-
lor. On Visible Surface Generation by A Priori
Tree Structures. Computer Graphics, 14(3):124–
133, 1980.

[5] Stuart Golodetz. The hesperus 3D game engine.
Source code available online at:
https://github.com/sgolodetz/hesperus2.

[6] Stuart Golodetz. Divide and Conquer: Parti-
tion Trees and Their Uses. Overload, 86:24–28,
August 2008.

[7] Stuart Golodetz. Automatic Navigation Mesh
Generation in Configuration Space. Overload,
117:22–27, October 2013.

[8] Stuart M Golodetz. A 3D Map Editor. Under-
graduate thesis, Oxford University Computing
Laboratory, May 2006.

[9] Dan Gordon and Shuhong Chen. Front-to-Back
Display of BSP Trees. IEEE Computer Graphics
and Applications, 11(5):79–85, 1991.

[10] Frederik W Jansen. Data structures for ray
tracing. In Laurens R A Kessener, Frans J
Peters, and Marloes L P van Lierop, editors,
Data Structures for Raster Graphics, pages 57–
73. Springer-Verlag Berlin Heidelberg, 1986.

[11] Mikola Lysenko, Roshan D’Souza, and Ching-
Kuan Shene. Improved Binary Space Partition
Merging. Computer-Aided Design, 40(12):1113–
1120, 2008.

[12] Stan Melax. Dynamic Plane Shifting BSP
Traversal. Graphics Interface, 2000:213–220,
2000.

[13] Ian Millington. Game Physics Engine Develop-
ment. Morgan Kaufmann, 2007.

[14] Raimund Seidel. Small-Dimensional Linear Pro-
gramming and Convex Hulls Made Easy. Dis-
crete & Computational Geometry, 6(1):423–434,
1991.

[15] Gary Snethen. XenoCollide: Complex Collision
Made Simple. In Scott Jacobs, editor, Game
Programming Gems 7, pages 165–178. Charles
River Media, 2008.

[16] Kelvin Sung and Peter Shirley. Ray Tracing with
the BSP Tree. In David Kirk, editor, Graph-
ics Gems III, pages 271–274. Morgan Kaufmann,
1992.

[17] Jean Paul van Waveren. The Quake III Arena
Bot. Master’s thesis, Delft University of Tech-
nology, 2001.

11

