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Abstract

Background: Real-time bedside information on regional ventilation and perfusion
during mechanical ventilation (MV) may help to elucidate the physiological and
pathophysiological effects of MV settings in healthy and injured lungs. We aimed to
study the effects of positive end-expiratory pressure (PEEP) and tidal volume (VT) on
the distributions of regional ventilation and perfusion by electrical impedance
tomography (EIT) in healthy and injured lungs.

Methods: One-hit acute lung injury model was established in 6 piglets by repeated
lung lavages (injured group). Four ventilated piglets served as the control group. A
randomized sequence of any possible combination of three VT (7, 10, and 15 ml/kg)
and four levels of PEEP (5, 8, 10, and 12 cmH2O) was performed in all animals.
Ventilation and perfusion distributions were computed by EIT within three regions-
of-interest (ROIs): nondependent, middle, dependent. A mixed design with one
between-subjects factor (group: intervention or control), and two within-subjects
factors (PEEP and VT) was used, with a three-way mixed analysis of variance (ANOVA).

Results: Two-way interactions between PEEP and group, and VT and group, were
observed for the dependent ROI (p = 0.035 and 0.012, respectively), indicating that
the increase in the dependent ROI ventilation was greater at higher PEEP and VT in
the injured group than in the control group. A two-way interaction between PEEP
and VT was observed for perfusion distribution in each ROI: nondependent (p =
0.030), middle (p = 0.006), and dependent (p = 0.001); no interaction was observed
between injured and control groups.

Conclusions: Large PEEP and VT levels were associated with greater pulmonary
ventilation of the dependent lung region in experimental lung injury, whereas they
affected pulmonary perfusion of all lung regions both in the control and in the
experimental lung injury groups.

Keywords: Respiratory distress syndrome, Adult, Mechanical ventilation, Electrical
impedance tomography, Pulmonary circulation, Ventilation-perfusion ratio
Introduction
Real-time information on regional ventilation and perfusion, and their changes, during

mechanical ventilation (MV) may help elucidate the physiological and pathophysio-

logical effects of MV settings in healthy and injured lungs.
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A single-compartment model of the healthy lung can describe aeration and its

changes associated with a homogeneous distribution of airway pressures, expansion,

and stretching across the lung parenchyma [1]. The positive airway pressure applied

during MV may affect pulmonary ventilation and perfusion distributions, and their tidal

changes, especially in the presence of acute lung injury.

The effects of positive end-expiratory pressure (PEEP) on the regional distribution of

tidal volume (VT) and recruitment have been investigated by chest computed tomog-

raphy in sedated-paralyzed patients with the acute respiratory distress syndrome

(ARDS) [2]. It was evidenced that PEEP made the gas distribution more homogeneous,

stretching the upper levels and recruiting the lower ones [2].

Electrical impedance tomography (EIT) has emerged as a new functional-imaging

method potentially meeting many clinical needs. It is a non-invasive, radiation-free tool

to monitor, in real-time and at the bedside, the distribution of pulmonary ventilation

[3–11]. Subjecting the patient’s chest to minute electrical currents, EIT measures the

electric potentials at the chest wall surface to produce two-dimensional (2D) images

that reflect the impedance distribution within the thorax. Cyclic variations in pulmon-

ary air and blood content are the major determinants for the changes in thoracic im-

pedance. Because cyclic changes in local impedance mainly correspond to changes in

lung aeration, EIT can reliably assess imbalances in the distribution of regional ventila-

tion [3, 4, 11, 12]. Besides other features like portability and the possibility of around-

the-clock monitoring, the high temporal resolution (modern EIT devices generate up to

50 images per second) is another important aspect of this imaging method, which also

allows the study of rapid physiological phenomena, such as the regional perfusion [13].

We aimed to measure pulmonary regional ventilation and perfusion at 12 combina-

tions of PEEP and VT levels in piglets with saline lavage-induced lung injury and in

mechanically ventilated control piglets. We sought to determine (1) if the PEEP and VT

effects on the regional distribution of tidal volume in injured lungs are also detectable

by EIT; (2) whether there are also effects on perfusion; and (3) does the presence or ab-

sence of injury affect PEEP- or VT-related changes in ventilation and perfusion

distributions.

Materials and methods
The study was performed at the Hedenstierna Laboratory, Uppsala University. The Re-

gional Animal Ethics Committee approved the study.

Eleven piglets (2–3 months old, weight 30.7 ± 1.5 kg, mean ± SD) of mixed Hamp-

shire, Yorkshire, and Swedish country breeds were included in the study. All animals

were studied lying in the supine position under general anesthesia with mandatory-

mode mechanical ventilation provided via tracheostomy. They were pre-medicated with

intramuscular xylazine 2 mg/kg, ketamine 20 mg/kg, and midazolam 0.5 mg/kg. An ear

vein was cannulated and intravenous ketamine 32 mg/kg/h, fentanyl 4 mcg/kg/h, and

midazolam 0.16 mg/kg/h were administered. Adequacy of anesthesia was confirmed by

the absence of reaction to painful stimulation between the front hooves and the ab-

sence of any signs of sympathetic stimulation after paralysis. Muscle relaxation was

achieved using continuous infusion of rocuronium titrated against the spontaneous re-

spiratory effort. Normovolemia was maintained with intravenous infusion of Ringer’s

lactate solution at 20 ml/kg/h for the first hour followed by 10 ml/kg/h.
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MV was performed using a Servo-I ventilator (Maquet, Rastatt, Germany). During

the instrumentation phase, ventilation was provided in volume-controlled mode, with

VT of 10 ml/kg, respiratory rate (RR) 25 breaths/min, PEEP 5 cm H2O, inspiratory-to-

expiratory (I:E) ratio 1:2, and fraction of inspired oxygen (FIO2) 0.4. ECG, invasive sys-

temic, central venous, and pulmonary artery blood pressures were transduced using a

standard clinical monitor (IntelliVue M8004A, Philips Healthcare, Best, Netherlands).

Digital outputs from the ventilator and clinical monitor were continuously recorded

using the acqIS software (EPiQ Life Science AB, Kista, Sweden). A femoral artery was

cannulated for pulse contour cardiac output monitoring (PiCCO, Pulsion Medical Sys-

tems, Munich, Germany). Pulmonary artery flotation catheter thermodilution cardiac

output measurements and arterial blood gas analyses were performed at the beginning

and end of the scanning series for each animal.
Acute lung injury model

Following baseline measurements, a one-hit acute lung injury model was established in

7 randomly chosen animals (injured group), with repeated lung lavages (30 ml/kg) of

isotonic saline applied until an arterial partial pressure of O2 and fraction of inspired

oxygen ratio (PaO2/FIO2) of 200 mmHg was reached. During the lavages, mechanical

ventilation was set in pressure-controlled mode, with FIO2 1.0, RR 30, PEEP 5, and a

driving pressure resulting in a VT of 6 ml/kg. If required, an infusion of noradrenaline

(0.01 to 0.1 mcg/kg/min) was commenced following an injury to maintain adequate

mean arterial blood pressure.
Investigational protocol

We studied the effects of combinations of PEEP and VT on regional ventilation and

perfusion by EIT in volume-controlled mode. A randomized sequence of any possible

combination of three VT (7, 10, and 15 ml/kg) and four levels of PEEP (5, 8, 10, and 12

cmH2O) was performed. In total, 12 conditions were studied.
Electrical impedance tomography

Pulmonary EIT data were recorded at 50 Hz with 32 electrodes equidistantly placed

around the circumference of the thorax just below the level of the axilla (Enlight, TIM-

PEL SA, São Paulo, Brazil) [13, 14]. The following functional images were generated by

EIT:

1. Ventilation maps derived from relative impedance changes, which reliably track

local, pixel-by-pixel changes in the content of air within the lung [12, 15]. It is

expressed as the percentage of total pulmonary ventilation through each of the

three ROIs (total 100%).

2. Perfusion maps obtained by injecting a bolus of 10 ml of a hypertonic solution

(NaCl 10%) into a central venous catheter during an expiratory breath hold for 20

s. Due to its high conductivity, NaCl 10% acts as an EIT contrast agent [16], which

after injection into the right atrium during apnea passes through the pulmonary

circulation, thereby producing a dilution curve that follows typical first-pass kinet-

ics. The resulting regional impedance curves are then analyzed to quantitatively
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assess regional perfusion [13, 17, 18], expressed as the percentage of total pulmon-

ary blood flow through each of the three ROIs (total 100%).

For the quantitative analysis of the ventilation and perfusion distributions by EIT, the

lungs were sub-segmented into three isogravitational regions-of-interest (ROIs): nonde-

pendent, middle, and dependent regions (Fig. 1).
Control group

The same EIT imaging protocol and data analysis were performed in four animals,

which did not receive saline lavages.
Statistics

The Shapiro-Wilk test was used to test data for normality. A mixed design with one

between-subjects factor (group: intervention or control), and two within-subjects fac-

tors (PEEP and VT) was used, with a three-way mixed analysis of variance (ANOVA).

The Bonferroni adjustment for multiple tests was applied for post hoc comparisons.

The statistical analyses were conducted with SPSS (version 20; IBM Corp, IBM SPSS

Statistics for Windows, Armonk, NY). Individual p values to indicate statistical tests’

significance are reported were relevant. Values presented are mean and SEM unless

otherwise stated.
Results
The fatality rate was 1/11 piglets, due to a cardiovascular event (this was in the injured

group, thus 4 controls and 6 injured completed the study). The 10 piglets that survived

the whole experiment were included in the analysis.

Just before starting the application of the twelve combinations of PEEP and VT, car-

diopulmonary parameters were measured (Table 1). During the measurements of these

cardiopulmonary parameters, mechanical ventilation was set in volume-controlled

mode, with FIO2 0.3–0.4 for the control animals and 0.7–0.8 for those with lung injury,

RR 25, PEEP 5, and a VT of 10 ml/kg.
Fig. 1 Representative image of regional distribution of pulmonary ventilation as recorded by electrical
impedance tomography (EIT) in one piglet from the control group. Three regions-of-interest (ROIs) of the
same vertical height were constructed from top (anterior) to bottom (posterior) of the lung: nondependent,
middle, and dependent ROI. In this ventilation map, lighter blue indicates greater ventilation than darker
blue, with white representing the greatest ventilation. A = anterior; P = posterior; L = left; R = right



Table 1 Cardiopulmonary parameters

Parameter Control Injured Control Injured

C1 C2 C3 C4 I1 I2 I3 I4 I5 I6 Mean (SD) Mean (SD)

Weight (kg) 30 33 30 33 30 28 29 33 31 31 31 (2) 30 (2)

Lavage volume (L) 0 0 0 0 4 5 2 4 9 2 0 (0) 4 (3)

P/F ratio (mmHg) 287 384 441 373 158 206 153 104 164 143 371 (64) 154 (33)*

ABP (mmHg) 65 78 89 79 68 95 97 97 75 62 78 (10) 82 (16)

PAP (mmHg) 20 27 14 20 34 27 27 20 32 34 20 (5) 29 (6) #

CVP (mmHg) 6 11 11 6 13 8 11 6 8 12 9 (3) 10 (3)

HR (bpm) 75 87 82 143 97 105 98 107 107 93 97 (31) 101 (6)

CO (L/min) 1.9 4.0 3.0 6.1 3.6 3.9 3.2 4.0 4.1 3.4 3.8 (1.8) 3.7 (0.4)

Abbreviations: C Control, I Injured (C1 to C4 and I1 to I6 refer to different animals), P/F ratio PaO2/FIO2 ratio sampled at
PEEP 5 cmH2O, ABP mean arterial blood pressure, PAP Pulmonary arterial pressure, CVP Central venous pressure, HR Heart
rate, CO Cardiac output measured by pulmonary artery flotation catheter thermodilution
*p < 0.001
#p = 0.02 from independent samples t test
Data are presented as mean (SD), where appropriate
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Figure 2 shows arterial partial pressure of O2 and fraction of inspired oxygen ratio

(2A), mean airway pressure (2B), and cardiac output (2C) in the control (left) and in-

jured (right) groups, in the 12 combinations of PEEP and VT.

Figure 3 shows representative EIT functional images illustrating the differences in the

distribution of pulmonary ventilation and perfusion at two levels of PEEP and VT.
Regional ventilation

Figure 4 shows the distribution of regional pulmonary ventilation at different PEEP and

VT levels. Higher PEEP and VT levels were associated with greater percent ventilation

in the dependent ROI in the injured group than in the control group.

A two-way interaction between PEEP and group (injured/control) was observed for

the dependent ROI (p = 0.035), with PEEP-related increase in dependent ROI ventila-

tion being greater in the injured than in the control group.

A two-way interaction between VT and group (injured/control) was also observed for

the dependent ROI (p = 0.012), indicating that the increase in the dependent ROI ven-

tilation was greater at higher VT in the injured group than in the control group.

For instance, at PEEP 12 cmH2O with VT 15 ml/kg the dependent ROI ventilation in the

injured group was 34.5 ± 5.6% versus 22.0 ± 2.4% at PEEP 5 cmH2O with VT 7 ml/kg.
Regional perfusion

No interactions between PEEP and group (injured/control) and/or between VT and

group (injured/control) were observed for regional perfusion.

Figure 5 shows the distribution of regional pulmonary perfusion at different PEEP

and VT levels. A two-way interaction between PEEP and VT was observed for each

ROI: nondependent (p = 0.030), middle (p = 0.006), and dependent (p = 0.001).

For instance, pooling together the two groups, at PEEP 5 cmH2O with VT 7 ml/kg

versus PEEP 12 cmH2O with VT 15 ml/kg the nondependent ROI perfusion was 12.6 ±

4.6% versus 10.2 ± 3.7%, the middle ROI perfusion was 54.3 ± 5.9% versus 49.5 ± 7.2%,

and the dependent ROI perfusion was 33.2 ± 9.6 % versus 40.2 ± 9.7%.



Fig. 2 Arterial partial pressure of O2 and fraction of inspired oxygen ratio (PaO2/FIO2; a), mean airway
pressure (b), and cardiac output (c) in the control (left, n = 4) and injured (right, n = 6) groups. PEEP =
positive end-expiratory pressure. VT = tidal volume
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Discussion
Regional ventilation of the most dependent lung region was greater with larger PEEP

and tidal volume in piglets with saline lavage-induced lung injury. In contrast, pulmon-

ary blood flow of all lung regions was altered by larger PEEP and tidal volume both in

control piglets and in piglets with saline lavage-induced lung injury.

Our study demonstrates that EIT can measure physiological and supra-physiological levels

of pulmonary ventilation and perfusion, and their changes associated with different MV



Fig. 3 Representative images of regional distribution of pulmonary ventilation (a) and perfusion (b) at two
different PEEP and VT levels as recorded by electrical impedance tomography (EIT) in one piglet from the
injured group. In the ventilation maps (a), lighter blue indicates greater ventilation than darker blue, with
white representing the greatest ventilation. Similarly, in the perfusion maps (b), the lighter red indicates
greater perfusion than darker red, with yellow indicating the greatest perfusion. The dotted line in the
perfusion maps shows the contour of the corresponding ventilation map (i. e., the corresponding pulmonary
ventilation area studied at the same point in time, hence under the same mechanical ventilation
settings). PEEP = positive end-expiratory pressure. VT = tidal volume.A = anterior; P = posterior; L = left;
R = right (all images)

Fig. 4 Regional distribution of pulmonary ventilation in the control (left, n = 4) and injured (right, n = 6)
groups. Larger PEEP levels were associated with greater percent increase in the ventilation of the dependent
lung in the injured group than in the control group. Similarly, larger VT was associated with a greater percent
increase in dependent lung ventilation in the injured group than in the control group. * indicates greater
percent increase in the ventilation of the dependent lung region with larger PEEP in the injured than in the
control group; † indicates greater percent increase in the ventilation of the dependent lung region with larger
VT in the injured than in the control group. PEEP = positive end-expiratory pressure. VT = tidal volume
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Fig. 5 Regional distribution of pulmonary perfusion in the control (left, n = 4) and injured (right, n = 6)
groups. Both larger PEEP and larger VT determined a significant perfusion change in each of the ROIs
considered: nondependent (p = 0.030), middle (p = 0.006), and dependent (p = 0.001). PEEP = positive end-
expiratory pressure. VT = tidal volume
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settings such as PEEP and VT, continuously, in real-time, and at the bedside. This informa-

tion may be critical for a timely evaluation of the precision and efficacy of attempts to

minimize some of the main ventilator-induced lung injury (VILI) mechanisms, particularly

in the presence of alveolar collapse, common in the lungs of patients with the ARDS [19].

Our data highlight that airspaces collapse in the injured group altered the pulmonary re-

gional ventilation response to different PEEP and VT levels. Notwithstanding, when ana-

lyzing the effects of PEEP and VT on regional perfusion, airspaces collapse did not seem

to play a major role. Regarding regional perfusion, the mutual interaction between PEEP

and tidal volume seemed to be more relevant. Our findings on regional ventilation may be

interpreted as predominantly gravity-related, since the ventilation of the more dependent

region exhibited a greater increase in its percentage with increasing VT and PEEP in the

injured group than in the control one. On the other hand, our findings on regional perfu-

sion, where all regions were altered and the presence or not of lung injury did not have an

effect, suggest that VT and PEEP interacted all over the lung parenchyma on the redistri-

bution of regional perfusion to the dependent zones [20, 21], also in agreement with pul-

monary blood volume tidal redistribution [22].

Pulmonary perfusion can be affected by anesthesia and by mechanical ventilation, affect-

ing arterial blood oxygenation [23–27]. The greatest determinant of pulmonary blood perfu-

sion distribution is the difference between alveolar and pulmonary capillary pressures [28].

Perfusion increases down the gravitational gradient in the lung, due to hydrostatic forces

and structural factors. Atelectasis is pronounced in the dependent lung regions, where per-

fusion of non-ventilated lung parenchyma produces a shunt effect of around 8–10% of car-

diac output in healthy lungs [24], and a greater shunt in injured lungs. In addition, non-

gravitational inhomogeneity of perfusion can reduce arterial blood oxygenation. Elevated

airway pressures applied to the lung during mechanical ventilation can compromise venous

return and redirect blood flow to dependent lung regions, with the effect being more

marked at higher levels of PEEP and/or VT [29]. Our data demonstrate that these effects

can be regionally monitored, measured, and tracked in real-time and at the bedside by EIT.
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Our distributions of regional pulmonary perfusion at different PEEP and VT levels

may have been also partly influenced through hypoxic pulmonary vasoconstriction

(HPV) [30]. In conditions of atelectasis, as in the injured group here, HPV could have

been greater at low levels of PEEP and VT. Noteworthy, we have shown before that per-

fusion is similar, whether a region is collapsed is aerated but non-ventilated [13], find-

ings that fit with observations by Benumof [31]—that HPV is the main mechanism of

reduced blood flow in atelectatic regions, not mechanical obstruction.

The main limitation of our study may be in the animal model that is not capable of

reproducing all of the key characteristics of lung injury in humans, for example in

ARDS patients, where EIT titration of MV may be most helpful. Any animal model is

relevant for only limited aspects of ARDS pathophysiology. However, if the specific

characteristics of an animal model are carefully taken in account, and its findings are

interpreted in the context of the study limitations, animal investigations can provide

valid assessments of relevant elements of ARDS in human patients. The surfactant de-

pletion by saline lavage model was developed based on the observation that ARDS is

associated with depletion of surfactant from the air spaces and reduced concentrations

of surfactant-associated proteins in bronchoalveolar lavage fluid [32]. However, deter-

mining precisely the extent to which the lung injury is caused by the saline lavage, by

mechanical ventilation, or both remains challenging. Depletion of surfactant may be as-

sociated with lung injury via two mechanisms: greater lung collapse and increased like-

lihood of mechanical injury during repeated cycles of airspaces opening/closure, and

impaired alveolar host defenses. Characteristically, saline lavage leads to almost imme-

diate hypoxemia, which may be rapidly reversed by recruitment maneuvers, suggesting

that the gas exchange abnormalities reflect collapsed alveoli with otherwise intact al-

veolar walls. The saline lavage by itself has little consequence in terms of permeability

changes or inflammation [33], although TNF-alpha is detectable in lavage fluid. Despite

surfactant depletion being an important feature of ARDS in humans, it usually appears

as a consequence rather than the primary cause of lung injury [34]. In ARDS, surfactant

abnormalities occur because of injury to the alveolar epithelium and exudation of

protein-rich edema fluid into the alveolar spaces. Saline lavage of the lungs results in

surfactant depletion in the absence of major alveolar epithelial damage. Epithelial

damage occurs only when the saline lavage is followed by an injurious ventilatory

strategy. Therefore, surfactant depletion followed by mechanical ventilation simulates

established ARDS and provides information about the consequences of surfactant

depletion, but it is less useful in modeling the initial pathophysiological mechanisms

that lead to ARDS. The major advantage of the saline lavage model is that it provides

an ideal way to test the effects of different ventilatory strategies on the development

of lung injury [33].

The approach applied in this study for the determination of regional pulmonary per-

fusion by EIT presents some limitations. The regional time-impedance curves resulting

from 10% NaCl injection [16, 35, 36] were fitted on a pixel-by-pixel basis by a gamma-

variate function to quantitatively assess regional perfusion [17, 18]. The subtraction of

the cardiac component of perfusion from mixed pixels while maintaining the net lung

component by using an EIT gamma variate algorithm is an essential feature of this

method. Such was made possible by the fitting also of the early cardiac component, also

on a pixel-by-pixel basis by a corresponding gamma-variate function. However, at the
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edges of the heart, some challenging overlap between the behavior of lung and heart

tissue may have remained, sometimes causing uncertainties in the double-function fit-

ting process applied. Although the location of the cardiac chambers in humans could

make this differentiation easier in the clinical setting, more studies on this subject are

needed.

The maximal slope method applied is based on the assumption that no tracer leaves

the ROI before the peak artery concentration is reached. Such assumption could be vio-

lated in the presence of the combination of high blood flow and low blood volume,

leading to small estimation errors, provided that blood volume decreases by no more

than one order of magnitude.

It is possible that some sodium chloride diffused outside the pulmonary blood vessels.

In this situation, the solute that remains in the vessel will leave the lungs through the

venous drainage while the diffused solute will tend to stay in the lungs, violating the

conservation of mass principle (unless an extravascular compartment is accounted for).

For the calculations of the maximal slope; however, the conservation of mass could still

be applied correctly, since one of the assumptions is that there is no outflow of hyper-

tonic saline before the peak of the pulmonary artery input function. In this case, the

conservation of mass implies that all the solute that reaches the ROI (feeding vessel

and extravascular compartment together), irrespective of whether it remains inside the

vessels or not, came through the feeding artery.

EIT imaging has 2D and 3D features (the electrodes are placed within a single plane,

but the finite mesh is 3D). Although reasonably large, the thickness of the EIT cross-

sectional slice (~ 15 cm) may represent different proportions of the lungs, depending

on the size and shape of the animal [4], without guarantee that most of the lung is rep-

resented in all animals, unless other imaging techniques are employed in parallel [37].

Finally, due to the low spatial resolution of EIT, the maximum slope time point might

be slightly displaced (in time) among sub-regions within the ROI, likely causing in-

accurate estimates of spatially averaged maximum slopes. The extent of this potential

limitation deserves future studies.
Conclusions
Our findings suggest that ventilation of the most dependent lung region is greater with

larger levels of PEEP and tidal volume in piglets with saline lavage-induced lung injury.

Moreover, pulmonary blood flow of all lung regions is affected by larger levels of PEEP

and tidal volume, both in control animals and in piglets with saline lavage-induced lung

injury. They also suggest that EIT is a promising bedside and noninvasive clinical tool

for continuous and real-time monitoring of pulmonary ventilation that can be espe-

cially useful in severe mechanically ventilated patients such as those with ARDS. EIT

can help to optimize mechanical ventilation settings, detect complications such as dere-

cruitment, and provide estimates of perfusion distribution. More clinical validation

studies are awaited to explore the full potential of the technology.
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