Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The effect of time and spatial averaging on (15)N chemical shift/(1)H-(15)N dipolar correlation spectra, i.e., PISEMA spectra, of alpha-helical membrane peptides and proteins is investigated. Three types of motion are considered: (a) Librational motion of the peptide planes in the alpha-helix; (b) rotation of the helix about its long axis; and (c) wobble of the helix about a nominal tilt angle. A 2ns molecular dynamics simulation of helix D of bacteriorhodopsin is used to determine the effect of librational motion on the spectral parameters. For the time averaging, the rotation and wobble of this same helix are modelled by assuming either Gaussian motion about the respective angles or a uniform distribution of a given width. For the spatial averaging, regions of possible (15)N chemical shift/(1)H-(15)N dipolar splittings are computed for a distribution of rotations and/or tilt angles of the helix. The computed spectra show that under certain motional modes the (15)N chemical shift/(1)H-(15)N dipolar pairs for each of the residues do not form patterns which mimic helical wheel patterns. As a result, the unambiguous identification of helix tilt and helix rotation without any resonance assignments or on the basis of a single assignment may be difficult.

Type

Journal article

Journal

J Biomol NMR

Publication Date

08/2003

Volume

26

Pages

283 - 295

Keywords

Algorithms, Bacteriorhodopsins, Hydrogen, Membrane Proteins, Models, Chemical, Motion, Nitrogen Isotopes, Nuclear Magnetic Resonance, Biomolecular, Protein Structure, Secondary, Rotation