Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ordered electrical stimulation of the ventricles is achieved by a specialized network of fibres known as the Purkinje system. The gross anatomy and basic functional role of the Purkinje system is well understood. However, very little is known about the detailed anatomy of the Purkinje system, its inter-individual variability and the implications of the variability in ventricular function, in part due to limitations in experimental techniques. In this study, we aim to provide new insight into the inter-individual variability of the free running Purkinje system anatomy and its impact on ventricular electrophysiological function. As a first step towards achieving this aim, high resolution magnetic resonance imaging (MRI) datasets of rat and the rabbit ventricles are obtained and analysed using a novel semi-automatic image processing algorithm for segmentation of the free-running Purkinje system. Segmented geometry from the MRI datasets is used to construct a computational model of the Purkinje system, which is incorporated in to an anatomically-based ventricular geometry to simulate ventricular electrophysiological activity.

Original publication




Conference paper

Publication Date





6793 - 6796


Animals, Electrophysiology, Magnetic Resonance Imaging, Purkinje Fibers, Rabbits