Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The activity of the heterodimeric transcription factor hypoxia inducible factor (HIF) is regulated by the post-translational, oxygen-dependent hydroxylation of its α-subunit by members of the prolyl hydroxylase domain (PHD or EGLN)-family and by factor inhibiting HIF (FIH). PHD-dependent hydroxylation targets HIFα for rapid proteasomal degradation; FIH-catalysed asparaginyl-hydroxylation of the C-terminal transactivation domain (CAD) of HIFα suppresses the CAD-dependent subset of the extensive transcriptional responses induced by HIF. FIH can also hydroxylate ankyrin-repeat domain (ARD) proteins, a large group of proteins which are functionally unrelated but share common structural features. Competition by ARD proteins for FIH is hypothesised to affect FIH activity towards HIFα; however the extent of this competition and its effect on the HIF-dependent hypoxic response are unknown. RESULTS: To analyse if and in which way the FIH/ARD protein interaction affects HIF-activity, we created a rate equation model. Our model predicts that an oxygen-regulated sequestration of FIH by ARD proteins significantly shapes the input/output characteristics of the HIF system. The FIH/ARD protein interaction is predicted to create an oxygen threshold for HIFα CAD-hydroxylation and to significantly sharpen the signal/response curves, which not only focuses HIFα CAD-hydroxylation into a defined range of oxygen tensions, but also makes the response ultrasensitive to varying oxygen tensions. Our model further suggests that the hydroxylation status of the ARD protein pool can encode the strength and the duration of a hypoxic episode, which may allow cells to memorise these features for a certain time period after reoxygenation. CONCLUSIONS: The FIH/ARD protein interaction has the potential to contribute to oxygen-range finding, can sensitise the response to changes in oxygen levels, and can provide a memory of the strength and the duration of a hypoxic episode. These emergent properties are predicted to significantly shape the characteristics of HIF activity in animal cells. We argue that the FIH/ARD interaction should be taken into account in studies of the effect of pharmacological inhibition of the HIF-hydroxylases and propose that the interaction of a signalling sensor with a large group of proteins might be a general mechanism for the regulation of signalling pathways.

Original publication

DOI

10.1186/1752-0509-4-139

Type

Journal article

Journal

BMC Syst Biol

Publication Date

18/10/2010

Volume

4

Keywords

Amino Acid Sequence, Ankyrin Repeat, Humans, Hydroxylation, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Kinetics, Models, Biological, Molecular Sequence Data, Oxygen, Proteome, Repressor Proteins, Time Factors