Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

While radiolabelled antibodies have found great utility as PET and SPECT imaging agents in oncological investigations, a notable shortcoming of these agents is their propensity to accumulate non-specifically within tumour tissue. The degree of this non-specific contribution to overall tumour uptake is highly variable and can ultimately lead to false conclusions. Therefore, in an effort to obtain a reliable measure of inter-individual differences in non-specific tumour uptake of radiolabelled antibodies, we demonstrate that the use of dual-isotope imaging overcomes this issue, enables true quantification of epitope expression levels, and allows non-invasive in vivo immunohistochemistry. The approach involves co-administration of (i) an antigen-targeting antibody labelled with zirconium-89 (89Zr), and (ii) an isotype-matched non-specific control IgG antibody labelled with indium-111 (111In). As an example, the anti-HER2 antibody trastuzumab was radiolabelled with 89Zr, and co-administered intravenously together with its 111In-labelled non-specific counterpart to mice bearing human breast cancer xenografts with differing HER2 expression levels (MDA-MB-468 [HER2-negative], MDA-MB-231 [low-HER2], MDA-MB-231/H2N [medium-HER2], and SKBR3 [high-HER2]). Simultaneous PET/SPECT imaging using a MILabs Vector4 small animal scanner revealed stark differences in the intratumoural distribution of [89Zr]Zr-trastuzumab and [111In]In-IgG, highlighting regions of HER2-mediated uptake and non-specific uptake, respectively. Normalisation of the tumour uptake values and tumour-to-blood ratios obtained with [89Zr]Zr-trastuzumab against those obtained with [111In]In-IgG yielded values which were most strongly correlated (R = 0.94; P = 0.02) with HER2 expression levels for each breast cancer type determined by Western blot and in vitro saturation binding assays, but not non-normalised uptake values. Normalised intratumoural distribution of [89Zr]Zr-trastuzumab correlated well with intratumoural heterogeneity HER2 expression.

Original publication

DOI

10.1016/j.nucmedbio.2019.01.010

Type

Journal article

Journal

Nucl Med Biol

Publication Date

03/2019

Volume

70

Pages

14 - 22

Keywords

Antibody, Dual-isotope, HER2, Molecular imaging, PET, SPECT, Animals, Cell Line, Tumor, Humans, Immunoconjugates, Immunohistochemistry, Indium Radioisotopes, Isotope Labeling, Mice, Positron-Emission Tomography, Radioisotopes, Receptor, ErbB-2, Tissue Distribution, Tomography, Emission-Computed, Single-Photon, Zirconium