Differential impact of reward and punishment on functional connectivity after skill learning.
Steel A., Silson EH., Stagg CJ., Baker CI.
Reward and punishment shape behavior, but the mechanisms underlying their effect on skill learning are not well understood. Here, we tested whether the functional connectivity of premotor cortex (PMC), a region known to be critical for learning of sequencing skills, is altered after training when reward or punishment is given during training. Resting-state fMRI was collected in two experiments before and after participants trained on either a serial reaction time task (SRTT; n = 36) or force-tracking task (FTT; n = 36) with reward, punishment, or control feedback. In each experiment, training-related change in PMC functional connectivity was compared across feedback groups. In both tasks, we found that reward and punishment differentially affected PMC functional connectivity. On the SRTT, participants trained with reward showed an increase in functional connectivity between PMC and cerebellum as well as PMC and striatum, while participants trained with punishment showed an increase in functional connectivity between PMC and medial temporal lobe connectivity. After training on the FTT, subjects trained with control and reward showed increases in PMC connectivity with parietal and temporal cortices after training, while subjects trained with punishment showed increased PMC connectivity with ventral striatum. While the results from the two experiments overlapped in some areas, including ventral pallidum, temporal lobe, and cerebellum, these regions showed diverging patterns of results across the two tasks for the different feedback conditions. These findings suggest that reward and punishment strongly influence spontaneous brain activity after training, and that the regions implicated depend on the task learned.