Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Current sleep medicine relies on the supervised analysis of polysomnographic measurements, comprising amongst others electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) signals. Convolutional neural networks (CNN) provide an interesting framework to automated classification of sleep based on these raw waveforms. In this study, we compare existing CNN approaches to four databases of pathological and physiological subjects. The best performing model resulted in Cohen's Kappa of $\kappa = 0 .75$ on healthy subjects and $\kappa = 0 .64$ on patients suffering from a variety of sleep disorders. Further, we show the advantages of additional sensor data (i.e., EOG and EMG). Deep learning approaches require a lot of data which is scarce for less prevalent diseases. For this, we propose a transfer learning procedure by pretraining a model on large public data and fine-tune this on each subject from a smaller dataset. This procedure is demonstrated using a private REM Behaviour Disorder database, improving sleep classification by 24.4%.

Original publication

DOI

10.1109/EMBC.2018.8512214

Type

Conference paper

Publication Date

07/2018

Volume

2018

Pages

171 - 174