Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A circadian clock has no survival value unless biological time is adjusted (entrained) to local time and, for most organisms, the profound changes in the light environment provide the local time signal (zeitgeber). Over 24 h, the amount of light, its spectral composition and its direction change in a systematic way. In theory, all of these features could be used for entrainment, but each would be subject to considerable variation or 'noise'. Despite this high degree of environmental noise, entrained organisms show remarkable precision in their daily activities. Thus, the photosensory task of entrainment is likely to be very complex, but fundamentally similar for all organisms. To test this hypothesis we compare the photoreceptors that mediate entrainment in both flies and mice, and assess their degree of convergence. Although superficially different, both organisms use specialized (employing novel photopigments) and complex (using multiple photopigments) photoreceptor mechanisms. We conclude that this multiplicity of photic inputs, in highly divergent organisms, must relate to the complex sensory task of using light as a zeitgeber.

Original publication




Conference paper

Publication Date





1779 - 1789


Animals, Circadian Rhythm, Drosophila, Mice, Photoreceptor Cells, Invertebrate, Photoreceptor Cells, Vertebrate, Retinal Pigments