Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The role of CD4+ T cells in the ischemic tissues of T2D patients remains unclear. Here, we report that T2D patients' vascular density was negatively correlated with the number of infiltrating CD4+ T cells after ischemic injury. Th1 was the predominant subset, and Th1-derived IFN-γ and TNF-α directly impaired human angiogenesis. We then blocked CD4+ T cell infiltration into the ischemic tissues of both Leprdb/db and diet-induced obese T2D mice. Genome-wide RNA sequencing shows an increased proliferative and angiogenic capability of diabetic ECs in ischemic tissues. Moreover, wire myography shows enhanced EC function and laser Doppler imaging reveals improved post-ischemic blood reperfusion. Mechanistically, functional revascularization after CD4 coreceptor blockade was mediated by Tregs. Genetic lineage tracing via Cdh5-CreER and Apln-CreER and coculture assays further illustrate that Tregs increased vascular density and induced de novo sprouting angiogenesis in a paracrine manner. Taken together, our results reveal that Th1 impaired while Tregs promoted functional post-ischemic revascularization in obesity and diabetes.

Original publication




Journal article


Cell Rep

Publication Date





1610 - 1626


CD4 coreceptor blockade, CD4(+) regulatory T cells, apelin, type 2 diabetes, vascular function, vascular inflammation, vascular regeneration