Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport.
Roldán MD., Sears HJ., Cheesman MR., Ferguson SJ., Thomson AJ., Berks BC., Richardson DJ.
NapC is a member of a family of bacterial membrane-anchored tetra-heme c-type cytochromes that participate in a number of respiratory electron transport pathways. They are postulated to mediate electron transfer between membrane quinols/quinones and soluble periplasmic enzymes. The water-soluble heme domain of NapC has been expressed as a periplasmic protein. Mediated redox potentiometry and characterization by UV-visible, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies demonstrates that soluble NapC contains four low spin hemes, each with bis-histidine axial ligation and with midpoint reduction potentials of -56, -181, -207, and -235 mV.