Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

SUMMARY: Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations.

Type

Journal article

Journal

Genome Biol

Publication Date

2001

Volume

2

Keywords

Amino Acid Sequence, Animals, Apoptosis, Caspase Inhibitors, Caspases, Chromosomal Proteins, Non-Histone, Humans, Inhibitor of Apoptosis Proteins, Insect Proteins, Microtubule-Associated Proteins, Molecular Sequence Data, Neoplasm Proteins, Phylogeny, Proteins, Sequence Homology, Amino Acid, X-Linked Inhibitor of Apoptosis Protein