Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During the early stages of oogenesis, oocyte-specific factors, synthesized by and stored within the oocyte, play critical roles during oogenesis, folliculogenesis, fertilization and early embryonic development in the mouse. The identification of marsupial maternal factors, expressed specifically in the ovary or oocyte, may provide an insight into the conserved evolutionary mechanisms that drive mammalian oocyte development to cleavage stages. In this study, 10 clones including dunnart ZP2 and c-mos, isolated by cDNA representational difference analysis, were validated by RT-PCR for ovary-specific expression. This novel combination of techniques to isolate ovary-specific genes has identified three novel genes with ovary-specific expression. Both dunnart ZP2 and c-mos exhibited ovary-specific expression, making this study the first isolation of c-mos in a marsupial species. Dunnart ZP2 expression was examined in detail by in situ hybridization and results indicate oocyte-specific expression of dunnart ZP2 in the cytoplasm of oocytes of primordial, primary and secondary follicles with expression being highest in oocytes of primary follicles. ZP2 was not expressed in granulosa cells of any follicles.

Original publication

DOI

10.1002/mrd.20708

Type

Journal article

Publication Date

02/2008

Volume

75

Pages

318 - 325

Keywords

Amino Acid Sequence, Animals, Conserved Sequence, DNA Primers, DNA, Complementary, Egg Proteins, Female, Gene Expression, Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating), Haplorhini, In Situ Hybridization, Marsupialia, Mice, Molecular Sequence Data, Ovary, Reverse Transcriptase Polymerase Chain Reaction, Xenopus, Zona Pellucida