Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Clinical pain is difficult to study using standard Blood Oxygenation Level Dependent (BOLD) magnetic resonance imaging because it is often ongoing and, if evoked, it is associated with stimulus-correlated motion. Arterial spin labelling (ASL) offers an attractive alternative. This study used arm repositioning to evoke clinically-relevant musculoskeletal pain in patients with shoulder impingement syndrome. Fifty-five patients were scanned using a multi post-labelling delay pseudo-continuous ASL (pCASL) sequence, first with both arms along the body and then with the affected arm raised into a painful position. Twenty healthy volunteers were scanned as a control group. Arm repositioning resulted in increased perfusion in brain regions involved in sensory processing and movement integration, such as the contralateral primary motor and primary somatosensory cortex, mid- and posterior cingulate cortex, and, bilaterally, in the insular cortex/operculum, putamen, thalamus, midbrain and cerebellum. Perfusion in the thalamus, midbrain and cerebellum was larger in the patient group. Results of a post hoc analysis suggested that the observed perfusion changes were related to pain rather than arm repositioning. This study showed that ASL can be useful in research on clinical ongoing musculoskeletal pain but the technique is not sensitive enough to detect small differences in perfusion.

Original publication

DOI

10.1101/163196

Type

Working paper