Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

3',5'-cyclic adenosine monophosphate (cAMP) signalling plays a major role in the cardiac myocyte response to extracellular stimulation by hormones and neurotransmitters. In recent years, evidence has accumulated demonstrating that the cAMP response to different extracellular agonists is not uniform: depending on the stimulus, cAMP signals of different amplitudes and kinetics are generated in different subcellular compartments, eliciting defined physiological effects. In this review, we focus on how real-time imaging using fluorescence resonance energy transfer (FRET)-based reporters has provided mechanistic insight into the compartmentalisation of the cAMP signalling pathway and allowed for the precise definition of the regulation and function of subcellular cAMP nanodomains.

Original publication

DOI

10.3390/jcdd5010017

Type

Journal article

Journal

J Cardiovasc Dev Dis

Publication Date

13/03/2018

Volume

5

Keywords

3′,5′-cyclic adenosine monophosphate, A kinase anchoring proteins, cardiac biology, compartmentalisation, fluorescence resonance energy transfer, phosphodiesterases, protein kinase A, real-time imaging, signalling