Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The peptide alamethicin provides a system for engineering ion channel charge selectivity. To define alamethicin charge selectivity experimentally, we measured single-channel current-voltage relationships in KCl gradients using covalently linked peptide dimers. Two factors were found to contribute to the charge selectivity of these channels: (i) the ionic strength of the surrounding solutions; and (ii) the distribution of fixed charge on the peptide. Native alamethicin channels exhibited either cation selectivity or anion selectivity depending on which end of the channel was at the low salt side of the membrane. When the glutamine residue at position 18 in the sequence was replaced with a lysine residue, an anion-selective channel was obtained regardless of which end of the channel was at the low salt side of the membrane.


Journal article


Novartis Found Symp

Publication Date





62 - 69


Alamethicin, Amino Acid Sequence, Anti-Bacterial Agents, Drug Design, Electrochemistry, Molecular Sequence Data, Protein Engineering