Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Alamethicin channels have been modelled as approximately parallel bundles of transbilayer helices containing between N = 4 and 8 helices per bundle. Initial models were generated by in vacuo restrained molecular dynamics (MD) simulations, and were refined by 60 ps MD simulations with water molecules present within and at the mouths of the central pore. The helix bundles were stabilized by networks of H-bonds between intra-pore water molecules and Gln-7 side-chains. Channel conductances were predicted on the basis of pore radius profiles, and suggested that the N = 4 bundle formed an occluded pore, whereas pores with N > or = 5 helices per bundle were open. Continuum electrostatics calculations suggested that the N = 6 pore is cation-selective, whereas pores with N > or = 7 helices per bundle were predicted to be somewhat less ion-selective.

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

26/04/1997

Volume

1325

Pages

235 - 249

Keywords

Alamethicin, Amino Acid Sequence, Computer Simulation, Ion Channels, Ionophores, Models, Molecular, Molecular Sequence Data, Molecular Structure, Static Electricity