Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antibodies to the acetylcholine receptor (AChR) have been recognized for over 40 years and have been important in the diagnosis of myasthenia gravis (MG), and its recognition in patients of different ages and thymic pathologies. The 10-20% of patients who do not have AChR antibodies are now known to comprise different subgroups, the most commonly reported of which is patients with antibodies to muscle-specific kinase (MuSK). The use of cell-based assays has extended the repertoire of antibody tests to clustered AChRs, low-density lipoprotein receptor-related protein 4, and agrin. Autoantibodies against intracellular targets, namely cortactin, titin, and ryanodine receptor (the latter two being associated with the presence of thymoma), may also be helpful as biomarkers in some patients. IgG4 MuSK antibodies are clearly pathogenic, but the coexisting IgG1, IgG2, and IgG3 antibodies, collectively, have effects that question the dominance of IgG4 as the sole pathologic factor in MuSK MG. After a brief historical review, we define the different subgroups and summarize the antibody characteristics. Experiments to demonstrate the in vitro and in vivo pathogenic roles of MuSK antibodies are discussed.

Original publication




Journal article


Ann N Y Acad Sci

Publication Date





143 - 153


active and passive immunization, clustered acetylcholine receptor, low-density lipoprotein receptor-related protein 4, muscle-specific kinase, myasthenia gravis, Agrin, Autoantibodies, Humans, Immunoglobulin G, Kv1.4 Potassium Channel, LDL-Receptor Related Proteins, Myasthenia Gravis, Receptor Protein-Tyrosine Kinases, Receptors, Cholinergic