Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND PURPOSE: Transient forebrain ischemia results in a 24- to 72-hour delayed loss of CA1 neurons. Previous work has not assessed whether insult durations can vary the degree and maturation rate of CA1 injury and whether there are different ultrastructural features of death after brief or severe ischemia. We also tested whether known cytoprotective drugs achieve permanent or transient neuroprotection. METHODS: In the first experiment, ischemia was induced for 5, 15, or 30 minutes with the use of the 4-vessel occlusion rat model with 1- to 28-day survival. Others subjected to 5 or 15 minutes of ischemia and allowed to survive for 14 or 7 days, respectively, were examined with electron microscopy. Finally, we determined whether NBQX (30 mg/kg x3 at 0 or 6 hours after ischemia), an AMPA antagonist, and SNX-111 (5 mg/kg at 6 hours after ischemia), an N-type Ca2+ channel antagonist, provided enduring CA1 protection against 10 minutes of ischemia. RESULTS: CA1 damage was not detected at 24 hours. Thirty minutes of ischemia produced 47% and 84% CA1 damage at 2 and 3 days, respectively. A 15-minute occlusion yielded 11%, 74%, and 86% loss at 2, 3, and 7 days, respectively. Five minutes of ischemia produced an even slower progression with 24%, 52%, and 59% loss at 3, 7, and 14 days, respectively. Ultrastructural examination after 5 and 15 minutes of ischemia revealed necrosis with no morphological evidence of apoptosis. Both NBQX (P<0.021) and SNX-111 (P<0.001) significantly reduced CA1 death at 7 days (</=35%) but not at 28 days (>/=80%) compared with saline treatment ( approximately 79%). CONCLUSIONS: Brief forebrain ischemia results in a slower progression of CA1 loss than more severe insults. Nonetheless, neuronal injury had necrotic, not apoptotic, morphology. NBQX and SNX-111 only postponed CA1 injury.

Type

Journal article

Journal

Stroke

Publication Date

03/1999

Volume

30

Pages

662 - 668

Keywords

Animals, Brain Ischemia, Cell Death, Hippocampus, Male, Neurons, Neuroprotective Agents, Peptides, Quinoxalines, Rats, Rats, Wistar, Time Factors, omega-Conotoxins