Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Perfusion-weighted imaging (PWI) measures can predict tissue outcome in acute ischemic stroke. Accuracy might be improved if differential tissue susceptibility to ischemia is considered. We present a novel voxel-by-voxel analysis to characterize cerebral blood flow (CBF) separately in gray (GM) and white matter (WM). Ten patients were scanned with inversion-recovery spin-echo EPI (IRSEPI), diffusion-weighted imaging (DWI), PWI<6 h from onset and fluid attenuated inversion-recovery (FLAIR) at 30 days. Image processing included coregistration to PWI, automatic segmentation of IRSEPI into GM, WM and CSF and semiautomatic segmentation of DWI/FLAIR to derive the acute and 30-day lesions. Five tissue compartments were defined: (1) 'Core' (abnormal acutely and at 30 days), (2) 'Growth' (or 'infarcted penumbra', abnormal only at 30 days), (3) 'Reversed' (abnormal acutely but normal at 30 days), (4) 'MTT-Delayed ' (tissue with delayed mean transit time but not part of the acute or 30-day lesion), and (5) 'Normal' brain. Cerebral blood flow in GM and WM of each compartment was obtained from quantitative maps. Gray matter and WM mean CBF in the growth region differed by 5.5 mL/100 g min (P=0.015). Mean CBF also differed significantly within normal and MTT-Delayed compartments. The difference in the reversed region approached statistical significance. In core, GM and WM CBF did not differ. The results suggest separate ischemic thresholds for GM and WM in stroke penumbra.

Original publication

DOI

10.1038/sj.jcbfm.9600130

Type

Journal article

Journal

J Cereb Blood Flow Metab

Publication Date

09/2005

Volume

25

Pages

1236 - 1243

Keywords

Aged, Brain, Cerebrovascular Circulation, Echo-Planar Imaging, Female, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Nervous System Diseases, Prospective Studies, Speech Disorders, Stroke