Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chromosome locations of non-major histocompatibility complex (MHC) genes contributing to insulin-dependent diabetes mellitus (IDDM) in mice have been determined by outcrossing NOD mice to other inbred strains congenic for the NOD MHC haplotype (H2g7). At least nine non-MHC IDDM susceptibility genes (Idd) were previously identified at first backcross (BC1) after outcross of NOD to C57BL/10.H2g7 congenic mice (B10.H2g7). We investigated whether the same set of Idd loci segregated with IDDM susceptibility after outcross of NOD to NON.H2g7 congenic mice. Since the outcrosses to NON.H2g7 and B10.H2g7 were performed in the same vivarium, direct comparisons were made of the chromosomal locations and relative strengths of Idd alleles in diabetic progeny from the two different outcrosses. In comparison with the NOD x B10.H2g7 outcross, the NOD x NON.H2g7 outcross produced significantly higher IDDM frequencies in F1, F2, and BC1 generations. The high F2 diabetes frequency allowed evaluation of the effects of homozygous expression of both the susceptibility and the resistance allele at Idd loci. This analysis demonstrated that no single non-MHC Idd locus was essential for the onset of diabetes in this cross. After outcross to NON.H2g7, Idd4 (chromosome [Chr] 11), Idd5 (Chr 1), and Idd8 (Chr 14) did not segregate with IDDM in either the BC1 or the F2 generation. Diabetogenic NOD-derived alleles at Idd2 (Chr 9), Idd3 (Chr 3), and Idd10 (Chr 3) were segregating in the BC1. An NON-derived allele contributing to susceptibility on Chr 7 (Idd7) was also detected. Dominant traits, detectable only in the F2 cross, were encoded by Chr 4 (Idd9) and two newly mapped loci on Chr 13 (Idd14) and 5 (Idd15). A third dominant trait was encoded by Chr 6 (possibly Idd6), but here, in contrast to Idd9, Idd14, and Idd15, the NON allele was diabetogenic. Stepwise logistic regression analysis of the BC1 and F2 data confirmed that the ability to identify certainty of the non-MHC Idd loci was contingent on the extent of homozygosity for NOD background genes. This study shows that the diabetogenic phenotype can be achieved through the actions of variable combinations of MHC-unlinked genes and a diabetogenic MHC haplotype.

Original publication

DOI

10.2337/diab.44.10.1186

Type

Journal article

Journal

Diabetes

Publication Date

10/1995

Volume

44

Pages

1186 - 1195

Keywords

Animals, Base Sequence, Chromosome Mapping, Crosses, Genetic, DNA Primers, DNA, Satellite, Diabetes Mellitus, Type 1, Female, Genetic Markers, Genetic Predisposition to Disease, Genotype, Major Histocompatibility Complex, Male, Mice, Mice, Inbred NOD, Mice, Inbred Strains, Models, Genetic, Molecular Sequence Data, Phenotype, Polymerase Chain Reaction, Sex Characteristics, Thy-1 Antigens