Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Smad4 in partnership with R-Smads (receptor-regulated Smads) activates TGF-beta (transforming growth factor-beta)-dependent signalling pathways essential for early mouse development. Smad4 null embryos die shortly after implantation due to severe defects in cell proliferation and visceral endoderm differentiation. In the basal state, Smad4 undergoes continuous shuttling between the cytoplasm and the nucleus due to the combined activities of an N-terminal NLS (nuclear localization signal) and an NES (nuclear export signal) located in its linker region. Cell culture experiments suggest that Smad4 nucleocytoplasmic shuttling plays an important role in TGF-beta signalling. In the present study we have investigated the role of Smad4 shuttling in vivo using gene targeting to engineer two independent mutations designed to eliminate Smad4 nuclear export. As predicted this results in increased levels of Smad4 in the nucleus of homozygous ES cells (embryonic stem cells) and primary keratinocytes, in the presence or absence of ligand. Neither mutation affects Smad4 expression levels nor its ability to mediate transcriptional activation in homozygous cell lines. Remarkably mouse mutants lacking the Smad4 NES develop normally. Smad4 NES mutants carrying one copy of a Smad4 null allele also fail to display developmental defects. The present study clearly demonstrates that Smad4 nucleocytoplasmic shuttling is not required for embryonic development or tissue homoeostasis in normal, healthy adult mice.

Original publication

DOI

10.1042/BJ20061830

Type

Journal article

Journal

Biochem J

Publication Date

01/06/2007

Volume

404

Pages

235 - 245

Keywords

Alleles, Animals, Base Sequence, Cell Nucleus, Cells, Cultured, Cytoplasm, DNA Primers, Gene Targeting, Mice, Mice, Knockout, Mice, Mutant Strains, RNA Splicing, Signal Transduction, Smad4 Protein, Transcriptional Activation, Transforming Growth Factor beta