Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY(6), aided by its specific phosphatase, the bifunctional kinase CheA(3), acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB(2) connects the cytoplasmic cluster kinase CheA(3) with the polar localised kinase CheA(2), and allows CheA(3)-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA(3) to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.

Original publication

DOI

10.1371/journal.pcbi.1000896

Type

Journal article

Journal

PLoS Comput Biol

Publication Date

19/08/2010

Volume

6

Keywords

Bacterial Proteins, Chemotaxis, Flagella, Histidine Kinase, Membrane Proteins, Models, Biological, Phosphoric Monoester Hydrolases, Phosphorylation, Protein Kinases, Rhodobacter sphaeroides, Signal Transduction