Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigate the mechanics of elastic fibres carrying liquid droplets. In such systems, buckling may localize inside the drop cavity if the fibre is thin enough. This so-called drop-on-coilable-fibre system exhibits a surprising liquid-like response under compression and a solid-like response under tension. Here we analyze this unconventional behavior in further detail and find theoretical, numerical and experimental evidence of negative stiffness events. We find that the first and main negative stiffness regime owes its existence to the transfer of capillary-stored energy into mechanical curvature energy. The following negative stiffness events are associated with changes in the coiling morphology of the fibre. Eventually coiling becomes tightly locked into an ordered phase where liquid and solid deformations coexist.

Original publication




Journal article


Soft Matter

Publication Date





5509 - 5517