Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Somatic transposition in mammals and insects could increase cellular diversity and neural mobilization has been implicated in age-dependent decline. To understand the impact of transposition in somatic cells it is essential to reliably measure the frequency and map locations of new insertions. Here we identified thousands of putative somatic transposon insertions in neurons from individual Drosophila melanogaster using whole-genome sequencing. However, the number of de novo insertions did not correlate with transposon expression or fly age. Analysing our data with exons as 'immobile genetic elements' revealed a similar frequency of unexpected exon translocations. A new sequencing strategy that recovers transposon: chromosome junction information revealed most putative de novo transposon and exon insertions likely result from unavoidable chimeric artefacts. Reanalysis of other published data suggests similar artefacts are often mistaken for genuine somatic transposition. We conclude that somatic transposition is less prevalent in Drosophila than previously envisaged.

Original publication

DOI

10.7554/eLife.28297

Type

Journal article

Journal

Elife

Publication Date

25/07/2017

Volume

6

Keywords

D. melanogaster, chromosomes, genes, genome sequencing, mushroom body, neurons, transposition, Animals, DNA Transposable Elements, Drosophila melanogaster, Mutagenesis, Insertional, Mutation Rate, Neurons, Recombination, Genetic, Whole Genome Sequencing