Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the recovery of executive functioning after TBI. We genotyped a sample of male Vietnam combat veterans consisting of a frontal lobe lesion group with focal penetrating head injuries and a non-head-injured control group for the Val66Met BDNF polymorphism. The Delis-Kaplan Executive Function System as a standardized psychometric battery was administrated to examine key domains of executive functions. The results revealed that the Met allele but not the hypothesized Val allele promotes recovery of executive functioning. Overall, the Met66 carriers in the lesion group performed as well as the Met66 carriers in the control group. The Met66 allele accounted for 6.2% of variance for executive functioning independently of other significant predictors including preinjury intelligence, left hemisphere volume loss, and dorsolateral PFC volume loss. The findings point to different mechanisms of the Val66Met BDNF gene in complex phenotypes under normal and pathological conditions. A better understanding of these mechanisms could be instrumental in the development and application of effective therapeutic strategies to facilitate recovery from TBI.

Original publication

DOI

10.1523/JNEUROSCI.1399-10.2011

Type

Journal article

Journal

J Neurosci

Publication Date

12/01/2011

Volume

31

Pages

598 - 606

Keywords

Brain Injuries, Brain-Derived Neurotrophic Factor, Frontal Lobe, Humans, Linear Models, Male, Methionine, Middle Aged, Polymorphism, Genetic, Recovery of Function, Valine, Veterans, Warfare, Wounds, Penetrating