Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 Elsevier Ltd Graph-based image segmentation is popular, because graphs can naturally represent image parts and the relationships between them. Whilst many single-scale approaches exist, significant interest has been shown in segmentation hierarchies, which represent image objects at different scales. However, segmenting arbitrary images automatically remains elusive: segmentation is under-specified, with different users expecting different outcomes. Hierarchical segmentation compounds this, since it is unclear where in the hierarchy objects should appear. Users can easily edit flat segmentations to influence the outcome, but editing hierarchical segmentations is harder: indeed, many existing interactive editing techniques make only small, local hierarchy changes. In this paper, we address this by introducing ‘zipping’ operations for segmentation hierarchies to facilitate user interaction. We use these operations to implement algorithms for non-sibling node merging and parent switching, and perform experiments on both 2D and 3D images to show that these latter algorithms can significantly reduce the interaction burden on the user.

Original publication

DOI

10.1016/j.patcog.2017.04.007

Type

Journal article

Journal

Pattern Recognition

Publication Date

01/10/2017

Volume

70

Pages

44 - 59